Abstract

The “Gigabit access passive optical network using wavelength division multiplexing” project aims to implement 64-Gb/s data transmission over 20-km single-mode fiber. Per-user symmetric data rates of 1-Gb/s will be achieved using wavelength division multiplexing passive optical network (WDM-PON) architecture with a 1:64 user split per PON segment. Enabling technologies being developed within the scope of the project include tunable transceivers and athermal 50-GHz array waveguide grating multiplexer devices. The future-proof WDM architecture will enable convergence triple-play (telephony, TV, and broadband internet) service over existing optical infrastructure, and also facilitate cost-effective dense wavelength division multiplexing for metro aggregation and mobile backhaul networks.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. P. W. Shumate, "Fiber-to-the-home: 1977–2007," J. Lightw. Technol. 26, 1093-1103 (2008).
  2. J. Green, "Paving the last mile with glass," IEEE Spectrum 39, 13-14 (2002).
  3. H. Shinohara, "FTTH experiences in Japan (invited)," J. Opt. Netw. 6, 616-623 (2007).
  4. C.-H. Lee, "WDM-PON experiences in Korea (Invited)," J. Opt. Netw. 6, 451-464 (2007).
  5. E. B. Desurvire, "Capacity demand and technology challenges for lightwave systems in the next two decades," J. Lightw. Technol. 24, 4697-4712 (2006).
  6. D. Breuer, "Opportunities for next-generation optical access," IEEE Commun. Mag. 49, S16-S24 (2011).
  7. ,“Next generation connectivity: A review of broadband Internet transitions and policy from around the world,” Berkman Center for Internet & Society, Harvard Univ., Cambridge, MA, 2009.
  8. R. E. Wagner, Optical Fiber Telecommunications V B (Academic, 2008) pp. 431-436.
  9. ,“Fibre capacity limitations in access networks,” Analysys Mason, Edinburgh, U.K., Rep. XOF4G011V03, 2010.
  10. S. Cherry, "Edholm's law of bandwidth," IEEE Spectrum 41, 58-60 (2004).
  11. Google Inc.Ultra high-speed broadband is coming to Kansas City Kansas CityMO http://googleblog.blogspot.com/2011/03/ultra-high-speed-broadband-is-coming-to.html [Online]. Available:.
  12. D. Z. Chen, "Requirements for bend insensitive fibers for verizon's FiOS and FTTH applications," presented at the Opt. Fiber Commun. Conf. San DiegoCA (2008) Paper NTuC.
  13. T. Koonen, "Fiber to the home/fiber to the premises: What, where, and when?," Proc. IEEE 94, 911-934 (2006).
  14. Infonetics Research (Staff of Broadband Access research division)PON, FTTH, and DSL Aggregation Equipment and Subscribers CampbellCA (2011) http://www.infonetics.com/research.asp?cvg=Broadband.
  15. K. Grobe, J.-P. Elbers, "PON in adolescence: From TDMA to WDM-PON," IEEE Commun. Mag. 46, 26-34 (2008).
  16. S.-M. Lee, S.-G. Mun, M.-H. Kim, C.-H. Lee, "Demonstration of a long-reach DWDM-PON for consolidation of metro and access networks," J. Lightw. Technol. 25, 271-276 (2007).
  17. L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, S.-W. Wong, "Next-generation optical access networks," J. Lightw. Technol. 25, 3428-42 (2007).
  18. GigaWaM website http://www.gigawam.com/.
  19. M. Pearson, "WDM-PON:A viable alternative for next generation FTTP," FTTH Prism 7, 26-30 (2010).
  20. Y. C. Chung, "Challenges Toward Practical WDM PON," presented at the Proc. Optoelectron. Commun. Conf. KaohsiungTaiwan (2006) Paper 6C41.
  21. H. Song, B.-W. Kim, B. Mukherjee, "Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms," IEEE Commun. Surveys Tut. 12, 112-123 (2010).
  22. S. S. Wagner, H. Kobrinski, T. J. Robe, H. L. Lemberg, L. S. Smoot, "Experimental demonstration of a passive optical subscriber loop architecture," Electron. Lett. 24, 344-346 (1988).
  23. Analysys Mason“FTTx roll-out and CAPEX in Developed Economies: Forecasts 2011–2016,” LondonU.K. (2011) http://www.researchandmarkets.com/reports/ 1790654/fttx_roll_out_and_capex_in_developed_economies .
  24. H.-J. Park, H. Yoon, T. Park, S.-J. Park, J. H. Kim, "Recent research activities of WDM-PON in korea," presented at the Opt. Fiber Commun. Conf. AnaheimCA (2007).
  25. FSAN website http://fsanweb.com/.
  26. Gigabit-Capable Passive Optical Networks (GPON): General Characteristics, ITU-T G.984.1, Mar., 2008.
  27. Gigabit-Capable Passive Optical Networks (G-PON): Physical Media Dependent Layer Specification, ITU-T. G.984.2, Mar., 2003.
  28. Gigabit-capable Passive Optical Networks (G-PON): Transmission Convergence Layer Specification, ITU-T. G.984.3, Mar., 2008.
  29. Gigabit-Capable Passive Optical Networks (G-PON): ONT Management and Control Interface Specification, ITU-T. G.984.4, Feb., 2008.
  30. 10-Gigabit-Capable Passive Optical Networks (XG-PON): General Requirements, ITU-T. G.987.1, Jan., 2010.
  31. K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, Y. C. Chung, "Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating," IEEE Photon. Technol. Lett. 16, 2380-2382 (2004).
  32. T.-Y. Kim, S.-K. Han, "Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission," IEEE Photon. Technol. Lett. 18, 2350-2 (2006).
  33. F. Payoux, P. Chanclou, M. Moignard, R. Brenot, "Gigabit optical access using WDM PON based on spectrum slicing and reflective SOA," Proc. Eur. Conf. Opt. Commun. (2005) pp. 455-456.
  34. M. Presi, R. Proietti, K. Prince, G. Contestabile, E. Ciaramella, "A 80 km reach fully passive WDM-PON based on reflective ONUs," Opt. Exp. 16, 19043-19048 (2008).
  35. Photonic Integrated Extended Metro and Access Network (PIEMAN) Website http://www.ist-pieman.org/.
  36. G. Talli, "Integrated metro and access network: PIEMAN," Proc. 12th Eur. Conf. Netw. Opt. Commun. pp. 493-500.
  37. Multi Service Access Everywhere (MUSE) Website http://www.ist-muse.org/.
  38. L. Banchi, R. Corsini, M. Presi, F. Cavaliere, E. Ciaramella, "Enhanced reflection tolerance in WDM-PON by chirped RZ modulation," Electron. Lett. 46, 1009-1011 (2010).
  39. S.-M. Lee, "Dense WDM-PON based on wavelength-locked Fabry-Pérot laser diodes," IEEE Photon. Technol. Lett. 17, 1579-1581 (2005).
  40. Z. Xu, "High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes," Opt. Exp. 15, 2953-2962 (2007).
  41. K. Iga, "Surface-emitting laser-its birth and generation of new optoelectronics field," IEEE J. Sel. Topics Quantum Electron. 6, 1201-1215 (2000).
  42. E. Kapon, A. Sirbu, "Long-wavelength VCSELs: Power-efficient answer," Nature Photon. 3, 27-29 (2009).
  43. T. B. Gibbon, "VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking," Opt. Fiber Technol. 17, 41-45 (2011).
  44. W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, M. C. Amann, "1.55-μm VCSEL arrays for high-bandwidth WDM-PONs," IEEE Photon. Technol. Lett. 20, 291-293 (2008).
  45. K. Prince, M. Ma, T. B. Gibbon, C. Neumeyr, E. Rönneberg, M. Ortsiefer, I. Tafur Monroy, "Free-running 1550-nm VCSEL for 10.7-Gb/s transmission in 99.7-km PON," J. Opt. Commun. Netw. 3, 399-403 (2011).
  46. C. Dragone, "An ${\rm N}*{\rm N}$ optical multiplexer using a planar arrangement of two star couplers," IEEE Photon. Technol. Lett. 3, 812-815 (1991).
  47. K. Okamoto, H. Yamada, "Arrayed-waveguide grating multiplexer with flat spectral response," Opt. Lett. 20, 43-45 (1995).
  48. H. Takahashi, S. Suzuki, K. Kato, I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution," Electron. Lett. 26, 87-88 (1990).
  49. T. Saito, "100 GHz-32ch athermal AWG with extremely low temperature dependency of center wavelength," Proc. Opt. Fiber Commun. Conf. (2003).
  50. J. Hasegawa, K. Nara, "Ultra-wide temperature range (${-}30-70^{\circ}$C) operation of athermal AWG module using pure aluminum plate," Proc. Opt. Fiber Commun Conf. (2006).
  51. T. Saito, "Temperature-insensitive (athermal) AWG modules," Furukawa Rev. 24, 29-33 (2003).
  52. K. Okamoto, "PLC technologies: present and future," presented at the Int. Soc. Opt. Eng. Denver, CO (2001) vol. 4352.
  53. H. Takahashi, "Recent progress on silica-based planar lightwave circuit for flexible and transparent photonic networks," Proc. Int. Conf. Photon. Switch. (2008) pp. 1-2.
  54. H. Takahashi, "High performance planar lightwave circuit devices for large capacity transmission," presented at the 37th Eur. Conf. Opt. Commun. GenevaSwitzerland (2011) Paper Th.12. Le Saleve.1.

2011 (3)

D. Breuer, "Opportunities for next-generation optical access," IEEE Commun. Mag. 49, S16-S24 (2011).

T. B. Gibbon, "VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking," Opt. Fiber Technol. 17, 41-45 (2011).

K. Prince, M. Ma, T. B. Gibbon, C. Neumeyr, E. Rönneberg, M. Ortsiefer, I. Tafur Monroy, "Free-running 1550-nm VCSEL for 10.7-Gb/s transmission in 99.7-km PON," J. Opt. Commun. Netw. 3, 399-403 (2011).

2010 (3)

M. Pearson, "WDM-PON:A viable alternative for next generation FTTP," FTTH Prism 7, 26-30 (2010).

H. Song, B.-W. Kim, B. Mukherjee, "Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms," IEEE Commun. Surveys Tut. 12, 112-123 (2010).

L. Banchi, R. Corsini, M. Presi, F. Cavaliere, E. Ciaramella, "Enhanced reflection tolerance in WDM-PON by chirped RZ modulation," Electron. Lett. 46, 1009-1011 (2010).

2009 (1)

E. Kapon, A. Sirbu, "Long-wavelength VCSELs: Power-efficient answer," Nature Photon. 3, 27-29 (2009).

2008 (4)

W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, M. C. Amann, "1.55-μm VCSEL arrays for high-bandwidth WDM-PONs," IEEE Photon. Technol. Lett. 20, 291-293 (2008).

M. Presi, R. Proietti, K. Prince, G. Contestabile, E. Ciaramella, "A 80 km reach fully passive WDM-PON based on reflective ONUs," Opt. Exp. 16, 19043-19048 (2008).

K. Grobe, J.-P. Elbers, "PON in adolescence: From TDMA to WDM-PON," IEEE Commun. Mag. 46, 26-34 (2008).

P. W. Shumate, "Fiber-to-the-home: 1977–2007," J. Lightw. Technol. 26, 1093-1103 (2008).

2007 (5)

H. Shinohara, "FTTH experiences in Japan (invited)," J. Opt. Netw. 6, 616-623 (2007).

C.-H. Lee, "WDM-PON experiences in Korea (Invited)," J. Opt. Netw. 6, 451-464 (2007).

S.-M. Lee, S.-G. Mun, M.-H. Kim, C.-H. Lee, "Demonstration of a long-reach DWDM-PON for consolidation of metro and access networks," J. Lightw. Technol. 25, 271-276 (2007).

L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, S.-W. Wong, "Next-generation optical access networks," J. Lightw. Technol. 25, 3428-42 (2007).

Z. Xu, "High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes," Opt. Exp. 15, 2953-2962 (2007).

2006 (3)

E. B. Desurvire, "Capacity demand and technology challenges for lightwave systems in the next two decades," J. Lightw. Technol. 24, 4697-4712 (2006).

T.-Y. Kim, S.-K. Han, "Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission," IEEE Photon. Technol. Lett. 18, 2350-2 (2006).

T. Koonen, "Fiber to the home/fiber to the premises: What, where, and when?," Proc. IEEE 94, 911-934 (2006).

2005 (1)

S.-M. Lee, "Dense WDM-PON based on wavelength-locked Fabry-Pérot laser diodes," IEEE Photon. Technol. Lett. 17, 1579-1581 (2005).

2004 (2)

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, Y. C. Chung, "Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating," IEEE Photon. Technol. Lett. 16, 2380-2382 (2004).

S. Cherry, "Edholm's law of bandwidth," IEEE Spectrum 41, 58-60 (2004).

2003 (1)

T. Saito, "Temperature-insensitive (athermal) AWG modules," Furukawa Rev. 24, 29-33 (2003).

2002 (1)

J. Green, "Paving the last mile with glass," IEEE Spectrum 39, 13-14 (2002).

2000 (1)

K. Iga, "Surface-emitting laser-its birth and generation of new optoelectronics field," IEEE J. Sel. Topics Quantum Electron. 6, 1201-1215 (2000).

1995 (1)

1991 (1)

C. Dragone, "An ${\rm N}*{\rm N}$ optical multiplexer using a planar arrangement of two star couplers," IEEE Photon. Technol. Lett. 3, 812-815 (1991).

1990 (1)

H. Takahashi, S. Suzuki, K. Kato, I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution," Electron. Lett. 26, 87-88 (1990).

1988 (1)

S. S. Wagner, H. Kobrinski, T. J. Robe, H. L. Lemberg, L. S. Smoot, "Experimental demonstration of a passive optical subscriber loop architecture," Electron. Lett. 24, 344-346 (1988).

Electron. Lett. (1)

S. S. Wagner, H. Kobrinski, T. J. Robe, H. L. Lemberg, L. S. Smoot, "Experimental demonstration of a passive optical subscriber loop architecture," Electron. Lett. 24, 344-346 (1988).

Electron. Lett. (2)

L. Banchi, R. Corsini, M. Presi, F. Cavaliere, E. Ciaramella, "Enhanced reflection tolerance in WDM-PON by chirped RZ modulation," Electron. Lett. 46, 1009-1011 (2010).

H. Takahashi, S. Suzuki, K. Kato, I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution," Electron. Lett. 26, 87-88 (1990).

FTTH Prism (1)

M. Pearson, "WDM-PON:A viable alternative for next generation FTTP," FTTH Prism 7, 26-30 (2010).

Furukawa Rev. (1)

T. Saito, "Temperature-insensitive (athermal) AWG modules," Furukawa Rev. 24, 29-33 (2003).

IEEE J. Sel. Topics Quantum Electron. (1)

K. Iga, "Surface-emitting laser-its birth and generation of new optoelectronics field," IEEE J. Sel. Topics Quantum Electron. 6, 1201-1215 (2000).

IEEE Photon. Technol. Lett. (3)

S.-M. Lee, "Dense WDM-PON based on wavelength-locked Fabry-Pérot laser diodes," IEEE Photon. Technol. Lett. 17, 1579-1581 (2005).

W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, M. C. Amann, "1.55-μm VCSEL arrays for high-bandwidth WDM-PONs," IEEE Photon. Technol. Lett. 20, 291-293 (2008).

C. Dragone, "An ${\rm N}*{\rm N}$ optical multiplexer using a planar arrangement of two star couplers," IEEE Photon. Technol. Lett. 3, 812-815 (1991).

IEEE Commun. Mag. (2)

D. Breuer, "Opportunities for next-generation optical access," IEEE Commun. Mag. 49, S16-S24 (2011).

K. Grobe, J.-P. Elbers, "PON in adolescence: From TDMA to WDM-PON," IEEE Commun. Mag. 46, 26-34 (2008).

IEEE Commun. Surveys Tut. (1)

H. Song, B.-W. Kim, B. Mukherjee, "Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms," IEEE Commun. Surveys Tut. 12, 112-123 (2010).

IEEE Photon. Technol. Lett. (2)

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, Y. C. Chung, "Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating," IEEE Photon. Technol. Lett. 16, 2380-2382 (2004).

T.-Y. Kim, S.-K. Han, "Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission," IEEE Photon. Technol. Lett. 18, 2350-2 (2006).

IEEE Spectrum (2)

S. Cherry, "Edholm's law of bandwidth," IEEE Spectrum 41, 58-60 (2004).

J. Green, "Paving the last mile with glass," IEEE Spectrum 39, 13-14 (2002).

J. Lightw. Technol. (4)

P. W. Shumate, "Fiber-to-the-home: 1977–2007," J. Lightw. Technol. 26, 1093-1103 (2008).

E. B. Desurvire, "Capacity demand and technology challenges for lightwave systems in the next two decades," J. Lightw. Technol. 24, 4697-4712 (2006).

S.-M. Lee, S.-G. Mun, M.-H. Kim, C.-H. Lee, "Demonstration of a long-reach DWDM-PON for consolidation of metro and access networks," J. Lightw. Technol. 25, 271-276 (2007).

L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, S.-W. Wong, "Next-generation optical access networks," J. Lightw. Technol. 25, 3428-42 (2007).

J. Opt. Commun. Netw. (1)

K. Prince, M. Ma, T. B. Gibbon, C. Neumeyr, E. Rönneberg, M. Ortsiefer, I. Tafur Monroy, "Free-running 1550-nm VCSEL for 10.7-Gb/s transmission in 99.7-km PON," J. Opt. Commun. Netw. 3, 399-403 (2011).

J. Opt. Netw. (2)

Nature Photon. (1)

E. Kapon, A. Sirbu, "Long-wavelength VCSELs: Power-efficient answer," Nature Photon. 3, 27-29 (2009).

Opt. Exp. (1)

Z. Xu, "High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes," Opt. Exp. 15, 2953-2962 (2007).

Opt. Exp. (1)

M. Presi, R. Proietti, K. Prince, G. Contestabile, E. Ciaramella, "A 80 km reach fully passive WDM-PON based on reflective ONUs," Opt. Exp. 16, 19043-19048 (2008).

Opt. Fiber Technol. (1)

T. B. Gibbon, "VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking," Opt. Fiber Technol. 17, 41-45 (2011).

Opt. Lett. (1)

Proc. IEEE (1)

T. Koonen, "Fiber to the home/fiber to the premises: What, where, and when?," Proc. IEEE 94, 911-934 (2006).

Other (25)

Infonetics Research (Staff of Broadband Access research division)PON, FTTH, and DSL Aggregation Equipment and Subscribers CampbellCA (2011) http://www.infonetics.com/research.asp?cvg=Broadband.

Google Inc.Ultra high-speed broadband is coming to Kansas City Kansas CityMO http://googleblog.blogspot.com/2011/03/ultra-high-speed-broadband-is-coming-to.html [Online]. Available:.

D. Z. Chen, "Requirements for bend insensitive fibers for verizon's FiOS and FTTH applications," presented at the Opt. Fiber Commun. Conf. San DiegoCA (2008) Paper NTuC.

GigaWaM website http://www.gigawam.com/.

,“Next generation connectivity: A review of broadband Internet transitions and policy from around the world,” Berkman Center for Internet & Society, Harvard Univ., Cambridge, MA, 2009.

R. E. Wagner, Optical Fiber Telecommunications V B (Academic, 2008) pp. 431-436.

,“Fibre capacity limitations in access networks,” Analysys Mason, Edinburgh, U.K., Rep. XOF4G011V03, 2010.

Photonic Integrated Extended Metro and Access Network (PIEMAN) Website http://www.ist-pieman.org/.

G. Talli, "Integrated metro and access network: PIEMAN," Proc. 12th Eur. Conf. Netw. Opt. Commun. pp. 493-500.

Multi Service Access Everywhere (MUSE) Website http://www.ist-muse.org/.

F. Payoux, P. Chanclou, M. Moignard, R. Brenot, "Gigabit optical access using WDM PON based on spectrum slicing and reflective SOA," Proc. Eur. Conf. Opt. Commun. (2005) pp. 455-456.

Y. C. Chung, "Challenges Toward Practical WDM PON," presented at the Proc. Optoelectron. Commun. Conf. KaohsiungTaiwan (2006) Paper 6C41.

Analysys Mason“FTTx roll-out and CAPEX in Developed Economies: Forecasts 2011–2016,” LondonU.K. (2011) http://www.researchandmarkets.com/reports/ 1790654/fttx_roll_out_and_capex_in_developed_economies .

H.-J. Park, H. Yoon, T. Park, S.-J. Park, J. H. Kim, "Recent research activities of WDM-PON in korea," presented at the Opt. Fiber Commun. Conf. AnaheimCA (2007).

FSAN website http://fsanweb.com/.

Gigabit-Capable Passive Optical Networks (GPON): General Characteristics, ITU-T G.984.1, Mar., 2008.

Gigabit-Capable Passive Optical Networks (G-PON): Physical Media Dependent Layer Specification, ITU-T. G.984.2, Mar., 2003.

Gigabit-capable Passive Optical Networks (G-PON): Transmission Convergence Layer Specification, ITU-T. G.984.3, Mar., 2008.

Gigabit-Capable Passive Optical Networks (G-PON): ONT Management and Control Interface Specification, ITU-T. G.984.4, Feb., 2008.

10-Gigabit-Capable Passive Optical Networks (XG-PON): General Requirements, ITU-T. G.987.1, Jan., 2010.

T. Saito, "100 GHz-32ch athermal AWG with extremely low temperature dependency of center wavelength," Proc. Opt. Fiber Commun. Conf. (2003).

J. Hasegawa, K. Nara, "Ultra-wide temperature range (${-}30-70^{\circ}$C) operation of athermal AWG module using pure aluminum plate," Proc. Opt. Fiber Commun Conf. (2006).

K. Okamoto, "PLC technologies: present and future," presented at the Int. Soc. Opt. Eng. Denver, CO (2001) vol. 4352.

H. Takahashi, "Recent progress on silica-based planar lightwave circuit for flexible and transparent photonic networks," Proc. Int. Conf. Photon. Switch. (2008) pp. 1-2.

H. Takahashi, "High performance planar lightwave circuit devices for large capacity transmission," presented at the 37th Eur. Conf. Opt. Commun. GenevaSwitzerland (2011) Paper Th.12. Le Saleve.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.