Abstract

Decreasing the widths and thicknesses of thin metal stripes can effectively increase the propagation distance of long-range surface plasmon polaritons, but at the cost of significant reduction on the overall mode confinement, which fundamentally limits the packing density in nanophotonic integration. By utilizing the coupling between the dielectric waveguide and plasmonic modes, we propose a silicon-based 3-D hybrid long-range plasmonic waveguide that not only supports long-range propagation, but also has compact modal size. Our simulation result shows that a propagation distance of 696 μm with an ultrasmall modal area of 0.0013 μm<sup>2</sup> can be simultaneously achieved at 1.55 μm.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
  2. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
  3. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
  4. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).
  5. A. Degiron, D. Smith, "Numerical simulations of long-range plasmons," Opt. Exp. 14, 1611-1625 (2006).
  6. R. Charbonneau, N. Lahoud, G. Mattiussi, P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Exp. 13, 977-984 (2005).
  7. P. Berini, "Long-range surface plasmon polaritons," Adv. Opt. Photon. 1, 484-588 (2009).
  8. J. Guo, R. Adato, "Extended long range plasmon waves in finite thickness metal film and layered dielectric materials," Opt. Exp. 14, 12409-12418 (2006).
  9. J. Guo, R. Adato, "Characteristics of ultra-long range surface plasmon waves at optical frequencies," Opt. Exp. 15, 5008-5017 (2007).
  10. Z. Sun, "Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface plasmon waveguiding," Appl. Phys. Lett. 91, 111112-1-111112-3 (2007).
  11. J. Chen, Z. Li, S. Yue, Q. Gong, "Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides," Opt. Exp. 17, 23603-23609 (2009).
  12. A. V. Krasavin, A. V. Zayats, "Numerical analysis of long-range surface plasmon polariton modes in nanoscale plasmonic waveguides," Opt. Lett. 35, 2118-2120 (2010).
  13. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photon. 2, 496-500 (2008).
  14. R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, J. Marti, "Analysis of hybrid dielectric plasmonic waveguides," IEEE J. Sel. Topics Quantum Electron. 14, 1496-1501 (2008).
  15. R. F. Oulton, G. Bartal, D. F. P. Pile, X. Zhang, "Confinement and propagation characteristics of subwavelength plasmonic modes," New J. Phys. 10, 105018-1-105018-14 (2008).
  16. M. Fujii, J. Leuthold, W. Freude, "Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides," IEEE Photon. Technol. Lett. 21, 362-364 (2009).
  17. D. Dai, S. He, "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Opt. Exp. 17, 16646-16653 (2009).
  18. Y. Bian, Z. Zheng, X. Zhao, J. Zhu, T. Zhou, "Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration," Opt. Exp. 17, 21320-21325 (2009).
  19. B. Yun, G. Hu, Y. Ji, Y. Cui, "Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity," J. Opt. Soc. Amer. B. 26, 1924-1929 (2009).
  20. X. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. Xue, Y. Zhou, W. W. Duley, "Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides," Opt. Exp. 18, 18945-18959 (2010).
  21. H. Benisty, M. Besbes, "Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition," J. Appl. Phys. 108, 063108-1-063108-8 (2010).
  22. P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
  23. V. R. Almeida, Q. Xu, C. A. Barrios, M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
  24. D. F. P. Pile, D. K. Gramotnev, "Channel plasmon—Polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004).
  25. E. Moreno1, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, F. J. García-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901-1-023901-4 (2008).
  26. K. Tanaka, M. Tanaka, T. Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Exp. 13, 256-266 (2005).
  27. L. Chen, B. Wang, G. P. Wang, "High efficiency 90$^{\circ}$ bending metal heterowaveguides for nanophotonic integration," Appl. Phys. Lett. 89, 243120-1-243120-3 (2006).
  28. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).

2010 (3)

A. V. Krasavin, A. V. Zayats, "Numerical analysis of long-range surface plasmon polariton modes in nanoscale plasmonic waveguides," Opt. Lett. 35, 2118-2120 (2010).

X. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. Xue, Y. Zhou, W. W. Duley, "Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides," Opt. Exp. 18, 18945-18959 (2010).

H. Benisty, M. Besbes, "Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition," J. Appl. Phys. 108, 063108-1-063108-8 (2010).

2009 (6)

J. Chen, Z. Li, S. Yue, Q. Gong, "Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides," Opt. Exp. 17, 23603-23609 (2009).

M. Fujii, J. Leuthold, W. Freude, "Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides," IEEE Photon. Technol. Lett. 21, 362-364 (2009).

D. Dai, S. He, "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Opt. Exp. 17, 16646-16653 (2009).

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, T. Zhou, "Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration," Opt. Exp. 17, 21320-21325 (2009).

B. Yun, G. Hu, Y. Ji, Y. Cui, "Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity," J. Opt. Soc. Amer. B. 26, 1924-1929 (2009).

P. Berini, "Long-range surface plasmon polaritons," Adv. Opt. Photon. 1, 484-588 (2009).

2008 (4)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photon. 2, 496-500 (2008).

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, J. Marti, "Analysis of hybrid dielectric plasmonic waveguides," IEEE J. Sel. Topics Quantum Electron. 14, 1496-1501 (2008).

R. F. Oulton, G. Bartal, D. F. P. Pile, X. Zhang, "Confinement and propagation characteristics of subwavelength plasmonic modes," New J. Phys. 10, 105018-1-105018-14 (2008).

E. Moreno1, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, F. J. García-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901-1-023901-4 (2008).

2007 (2)

J. Guo, R. Adato, "Characteristics of ultra-long range surface plasmon waves at optical frequencies," Opt. Exp. 15, 5008-5017 (2007).

Z. Sun, "Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface plasmon waveguiding," Appl. Phys. Lett. 91, 111112-1-111112-3 (2007).

2006 (4)

L. Chen, B. Wang, G. P. Wang, "High efficiency 90$^{\circ}$ bending metal heterowaveguides for nanophotonic integration," Appl. Phys. Lett. 89, 243120-1-243120-3 (2006).

J. Guo, R. Adato, "Extended long range plasmon waves in finite thickness metal film and layered dielectric materials," Opt. Exp. 14, 12409-12418 (2006).

A. Degiron, D. Smith, "Numerical simulations of long-range plasmons," Opt. Exp. 14, 1611-1625 (2006).

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).

2005 (2)

R. Charbonneau, N. Lahoud, G. Mattiussi, P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Exp. 13, 977-984 (2005).

K. Tanaka, M. Tanaka, T. Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Exp. 13, 256-266 (2005).

2004 (2)

2003 (1)

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).

2000 (1)

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).

1981 (1)

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).

1972 (1)

P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

Z. Sun, "Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface plasmon waveguiding," Appl. Phys. Lett. 91, 111112-1-111112-3 (2007).

L. Chen, B. Wang, G. P. Wang, "High efficiency 90$^{\circ}$ bending metal heterowaveguides for nanophotonic integration," Appl. Phys. Lett. 89, 243120-1-243120-3 (2006).

IEEE J. Sel. Topics Quantum Electron. (1)

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, J. Marti, "Analysis of hybrid dielectric plasmonic waveguides," IEEE J. Sel. Topics Quantum Electron. 14, 1496-1501 (2008).

IEEE Photon. Technol. Lett. (1)

M. Fujii, J. Leuthold, W. Freude, "Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides," IEEE Photon. Technol. Lett. 21, 362-364 (2009).

J. Appl. Phys. (1)

H. Benisty, M. Besbes, "Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition," J. Appl. Phys. 108, 063108-1-063108-8 (2010).

J. Opt. Soc. Amer. B. (1)

B. Yun, G. Hu, Y. Ji, Y. Cui, "Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity," J. Opt. Soc. Amer. B. 26, 1924-1929 (2009).

Nature (1)

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).

Nature Photon. (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photon. 2, 496-500 (2008).

New J. Phys. (1)

R. F. Oulton, G. Bartal, D. F. P. Pile, X. Zhang, "Confinement and propagation characteristics of subwavelength plasmonic modes," New J. Phys. 10, 105018-1-105018-14 (2008).

Opt. Exp. (9)

J. Chen, Z. Li, S. Yue, Q. Gong, "Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides," Opt. Exp. 17, 23603-23609 (2009).

X. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. Xue, Y. Zhou, W. W. Duley, "Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides," Opt. Exp. 18, 18945-18959 (2010).

D. Dai, S. He, "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Opt. Exp. 17, 16646-16653 (2009).

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, T. Zhou, "Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration," Opt. Exp. 17, 21320-21325 (2009).

J. Guo, R. Adato, "Extended long range plasmon waves in finite thickness metal film and layered dielectric materials," Opt. Exp. 14, 12409-12418 (2006).

J. Guo, R. Adato, "Characteristics of ultra-long range surface plasmon waves at optical frequencies," Opt. Exp. 15, 5008-5017 (2007).

A. Degiron, D. Smith, "Numerical simulations of long-range plasmons," Opt. Exp. 14, 1611-1625 (2006).

R. Charbonneau, N. Lahoud, G. Mattiussi, P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Exp. 13, 977-984 (2005).

K. Tanaka, M. Tanaka, T. Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Exp. 13, 256-266 (2005).

Opt. Lett. (3)

Phys. Rev. B (2)

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).

P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

Phys. Rev. Lett. (2)

E. Moreno1, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, F. J. García-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901-1-023901-4 (2008).

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).

Science (1)

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).

Other (1)

L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.