Abstract

We discuss the design and realization of a passive all-optical device for 2R regeneration based on a dual-stage of high-speed microcavity saturable absorbers, one for noise reduction of digital zeros (SA-0), and the other for noise reduction of digital ones (SA-1). The numerical and experimental results showed that by using a simple combination of SA-0 and SA-1 devices, one can obtain an intensity transfer function with a large extinction ratio improvement of low power levels and a strongly nonlinear response reducing the noise of high power levels. The amplitude and phase characterization of a 40-GHz signal transmitted by this device, obtained by frequency-resolved optical gating measurements, reveals the intensity-dependant pulse-compression effect and the low chirp introduced by this device.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. O. Leclerc, "Optical regeneration at 40 Gb/s and beyond, IEEE," J. Lightw. Technol. 21, 2779-2789 (2003).
  2. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," ECOC (1998) pp. 475-476.
  3. J. K. Lucek, K. Smith, "All-optical signal regenerator," Opt. Lett. 18, 1226-1228 (1993).
  4. S. Bischoff, J. Mork, "All-optical signal regeneration at 40 Gbit/s using a Mach–Zehnder interferometer based on semiconductor optical amplifiers," Lasers Electro-Opt. Conf. (2000) pp. 345.
  5. S. Hojfeldt, "All-optical wavelength conversion and signal regeneration using an electroabsorption modulator ," J. Lightw. Technol. 18, 1121-1127 (2000).
  6. D. Wolfson, "40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach–Zehnder interferometer," IEEE Photon. Technol. Lett. 12, 332-334 (2000).
  7. M. Matsumoto, "Analysis of optical regeneration utilizing self-phase modulation in a highly nonlinear fiber ," Photon. Technol. Lett. 14, 319-321 (2002).
  8. S. Radic, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," Photon. Technol. Lett. 15, 957-959 ( 2003).
  9. E. Seguineau, "Regeneration capabilities of passive saturable absorber-based optical 2R in 20 Gbit/s RZ DWDM long-haul transmissions," Electron. Lett. 39, 857-858 (2003).
  10. J. Mangeney, "Comparison of light- and heavy-ion-irradiated quantum-wells for use as ultrafast saturable absorbers ," Appl. Phys. Lett. 79, 2722-2724 (2001).
  11. J. Mangeney, "Sub-picosecond wideband efficient saturable absorber created by high energy (200 MeV) irradiation of Au$^{+}$ ions into bulk GaAs," Electron. Lett. 34, 818-820 (1998).
  12. D. Massoubre, "All-optical extinction-ratio enhancement of a 160 GHz pulse train by a saturable-absorber vertical microcavity," Opt. Lett. 31, 537-539 (2006).
  13. J. Fatome, "All-optical reshaping based on a passive saturable absorber microcavity device for future 160-Gb/s applications," Photon. Technol. Lett. 19, 245-247 (2007).
  14. L. Bramerie, "Cascadability and wavelength tunability assessment of a 2R regeneration device based on a 8 channel saturable absorber module," presented at the Opt. Fiber Conf. AnaheimCA (2007).
  15. M. Gay, "Bit-error-rate assessment of 170-Gb/s regeneration using a saturable absorber and a nonlinear-fiber-based power limiter," Photon. Technol. Lett. 22, 158-160 (2010).
  16. M. Gay, "Cascadability assessment of a 2R regenerator based on a saturable absorber and a semiconductor optical amplifier in a path switchable recirculating loop," Photon. Technol. Lett. 18, 1273-1275 (2006).
  17. H. T. Nguyen, "New passive all-optical semiconductor device for bit-1 level noise reduction," presented at the Eur. Conf. Lasers Electro-Opt. Int. Quantum Electron. Conf. (CLEOE-IQEC) MunichGermany (2007).
  18. H. T. Nguyen, "A passive all-optical semiconductor device for level amplitude stabilization based on fast saturable absorber," Appl. Phys. Lett. 92, 111107-1-111107-3 (2008).
  19. D. Massoubre, "Scaling of the saturation energy in microcavity saturable absorber devices," Appl. Phys. Lett. 88, 153513-1-153513-3 (2006 ).
  20. R. Trebino, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
  21. R. Takahashi, "Ultrafast 1.55-mu m photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells ," Appl. Phys. Lett. 65, 1790-1792 (1994).
  22. E. L. Delpon, "Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells ," Appl. Phys. Lett. 72, 759-761 (1998).
  23. D. Vignaud, "Electron lifetime of heavily Be-doped In[sub 0.53]Ga[sub 0.47]As as a function of growth temperature and doping density," Appl. Phys. Lett. 80, 4151-4153 (2002).
  24. M. Guezo, "Nonlinear absorption temporal dynamics of Fe-doped GaInAs/InP multiple quantum wells ," Appl. Phys. Lett. 94, 2355-2359 (2003).
  25. D. Massoubre, "Analysis of thermal limitations in high-speed microcavity saturable absorber all-optical switching gates," J. Lightw. Technol. 24, 3400-3408 (2006).
  26. E. Garmire, "Resonant optical nonlinearities in semiconductors," IEEE J. Sel. Top. in Quantum Electron. 6, 1094-1110 (2000).
  27. D. S. Chemla, D. A. B. Miller, "Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures ," J. Opt. Soc. Amer. B 2, 1155-1173 (1985).
  28. H. A. Haus, Y. Silberberg, "Theory of mode locking of a laser diode with a multiple-quantum-well structure," J. Opt. Soc. Amer. B 2, 1237-1243 (1985).
  29. S. W. Corzine, "Design of Fabry–Perot surface-emitting lasers with a periodic gain structure," J. Quantum Electron. 25, 1513-1524 (1989).
  30. Q. T. Le, "All-optical 2R regeneration using passive saturable absorption," Opt. Commun. 282, 2768-2773 (2009).

2010 (1)

M. Gay, "Bit-error-rate assessment of 170-Gb/s regeneration using a saturable absorber and a nonlinear-fiber-based power limiter," Photon. Technol. Lett. 22, 158-160 (2010).

2009 (1)

Q. T. Le, "All-optical 2R regeneration using passive saturable absorption," Opt. Commun. 282, 2768-2773 (2009).

2008 (1)

H. T. Nguyen, "A passive all-optical semiconductor device for level amplitude stabilization based on fast saturable absorber," Appl. Phys. Lett. 92, 111107-1-111107-3 (2008).

2007 (1)

J. Fatome, "All-optical reshaping based on a passive saturable absorber microcavity device for future 160-Gb/s applications," Photon. Technol. Lett. 19, 245-247 (2007).

2006 (3)

M. Gay, "Cascadability assessment of a 2R regenerator based on a saturable absorber and a semiconductor optical amplifier in a path switchable recirculating loop," Photon. Technol. Lett. 18, 1273-1275 (2006).

2006 (3)

D. Massoubre, "Scaling of the saturation energy in microcavity saturable absorber devices," Appl. Phys. Lett. 88, 153513-1-153513-3 (2006 ).

2006 (3)

D. Massoubre, "All-optical extinction-ratio enhancement of a 160 GHz pulse train by a saturable-absorber vertical microcavity," Opt. Lett. 31, 537-539 (2006).

D. Massoubre, "Analysis of thermal limitations in high-speed microcavity saturable absorber all-optical switching gates," J. Lightw. Technol. 24, 3400-3408 (2006).

2003 (3)

M. Guezo, "Nonlinear absorption temporal dynamics of Fe-doped GaInAs/InP multiple quantum wells ," Appl. Phys. Lett. 94, 2355-2359 (2003).

E. Seguineau, "Regeneration capabilities of passive saturable absorber-based optical 2R in 20 Gbit/s RZ DWDM long-haul transmissions," Electron. Lett. 39, 857-858 (2003).

O. Leclerc, "Optical regeneration at 40 Gb/s and beyond, IEEE," J. Lightw. Technol. 21, 2779-2789 (2003).

2002 (2)

M. Matsumoto, "Analysis of optical regeneration utilizing self-phase modulation in a highly nonlinear fiber ," Photon. Technol. Lett. 14, 319-321 (2002).

D. Vignaud, "Electron lifetime of heavily Be-doped In[sub 0.53]Ga[sub 0.47]As as a function of growth temperature and doping density," Appl. Phys. Lett. 80, 4151-4153 (2002).

2001 (1)

J. Mangeney, "Comparison of light- and heavy-ion-irradiated quantum-wells for use as ultrafast saturable absorbers ," Appl. Phys. Lett. 79, 2722-2724 (2001).

2000 (3)

S. Hojfeldt, "All-optical wavelength conversion and signal regeneration using an electroabsorption modulator ," J. Lightw. Technol. 18, 1121-1127 (2000).

D. Wolfson, "40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach–Zehnder interferometer," IEEE Photon. Technol. Lett. 12, 332-334 (2000).

E. Garmire, "Resonant optical nonlinearities in semiconductors," IEEE J. Sel. Top. in Quantum Electron. 6, 1094-1110 (2000).

1998 (2)

J. Mangeney, "Sub-picosecond wideband efficient saturable absorber created by high energy (200 MeV) irradiation of Au$^{+}$ ions into bulk GaAs," Electron. Lett. 34, 818-820 (1998).

E. L. Delpon, "Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells ," Appl. Phys. Lett. 72, 759-761 (1998).

1997 (1)

R. Trebino, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).

1994 (1)

R. Takahashi, "Ultrafast 1.55-mu m photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells ," Appl. Phys. Lett. 65, 1790-1792 (1994).

1993 (1)

1989 (1)

S. W. Corzine, "Design of Fabry–Perot surface-emitting lasers with a periodic gain structure," J. Quantum Electron. 25, 1513-1524 (1989).

1985 (2)

D. S. Chemla, D. A. B. Miller, "Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures ," J. Opt. Soc. Amer. B 2, 1155-1173 (1985).

H. A. Haus, Y. Silberberg, "Theory of mode locking of a laser diode with a multiple-quantum-well structure," J. Opt. Soc. Amer. B 2, 1237-1243 (1985).

Appl. Phys. Lett. (1)

D. Massoubre, "Scaling of the saturation energy in microcavity saturable absorber devices," Appl. Phys. Lett. 88, 153513-1-153513-3 (2006 ).

Appl. Phys. Lett. (1)

H. T. Nguyen, "A passive all-optical semiconductor device for level amplitude stabilization based on fast saturable absorber," Appl. Phys. Lett. 92, 111107-1-111107-3 (2008).

Appl. Phys. Lett. (5)

J. Mangeney, "Comparison of light- and heavy-ion-irradiated quantum-wells for use as ultrafast saturable absorbers ," Appl. Phys. Lett. 79, 2722-2724 (2001).

R. Takahashi, "Ultrafast 1.55-mu m photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells ," Appl. Phys. Lett. 65, 1790-1792 (1994).

E. L. Delpon, "Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells ," Appl. Phys. Lett. 72, 759-761 (1998).

D. Vignaud, "Electron lifetime of heavily Be-doped In[sub 0.53]Ga[sub 0.47]As as a function of growth temperature and doping density," Appl. Phys. Lett. 80, 4151-4153 (2002).

M. Guezo, "Nonlinear absorption temporal dynamics of Fe-doped GaInAs/InP multiple quantum wells ," Appl. Phys. Lett. 94, 2355-2359 (2003).

Electron. Lett. (2)

J. Mangeney, "Sub-picosecond wideband efficient saturable absorber created by high energy (200 MeV) irradiation of Au$^{+}$ ions into bulk GaAs," Electron. Lett. 34, 818-820 (1998).

E. Seguineau, "Regeneration capabilities of passive saturable absorber-based optical 2R in 20 Gbit/s RZ DWDM long-haul transmissions," Electron. Lett. 39, 857-858 (2003).

IEEE J. Sel. Top. in Quantum Electron. (1)

E. Garmire, "Resonant optical nonlinearities in semiconductors," IEEE J. Sel. Top. in Quantum Electron. 6, 1094-1110 (2000).

IEEE Photon. Technol. Lett. (1)

D. Wolfson, "40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach–Zehnder interferometer," IEEE Photon. Technol. Lett. 12, 332-334 (2000).

J. Opt. Soc. Amer. B (1)

H. A. Haus, Y. Silberberg, "Theory of mode locking of a laser diode with a multiple-quantum-well structure," J. Opt. Soc. Amer. B 2, 1237-1243 (1985).

J. Lightw. Technol. (3)

D. Massoubre, "Analysis of thermal limitations in high-speed microcavity saturable absorber all-optical switching gates," J. Lightw. Technol. 24, 3400-3408 (2006).

S. Hojfeldt, "All-optical wavelength conversion and signal regeneration using an electroabsorption modulator ," J. Lightw. Technol. 18, 1121-1127 (2000).

O. Leclerc, "Optical regeneration at 40 Gb/s and beyond, IEEE," J. Lightw. Technol. 21, 2779-2789 (2003).

J. Opt. Soc. Amer. B (1)

D. S. Chemla, D. A. B. Miller, "Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures ," J. Opt. Soc. Amer. B 2, 1155-1173 (1985).

J. Quantum Electron. (1)

S. W. Corzine, "Design of Fabry–Perot surface-emitting lasers with a periodic gain structure," J. Quantum Electron. 25, 1513-1524 (1989).

Opt. Commun. (1)

Q. T. Le, "All-optical 2R regeneration using passive saturable absorption," Opt. Commun. 282, 2768-2773 (2009).

Opt. Lett. (2)

Photon. Technol. Lett. (1)

M. Gay, "Cascadability assessment of a 2R regenerator based on a saturable absorber and a semiconductor optical amplifier in a path switchable recirculating loop," Photon. Technol. Lett. 18, 1273-1275 (2006).

Photon. Technol. Lett. (4)

M. Gay, "Bit-error-rate assessment of 170-Gb/s regeneration using a saturable absorber and a nonlinear-fiber-based power limiter," Photon. Technol. Lett. 22, 158-160 (2010).

J. Fatome, "All-optical reshaping based on a passive saturable absorber microcavity device for future 160-Gb/s applications," Photon. Technol. Lett. 19, 245-247 (2007).

M. Matsumoto, "Analysis of optical regeneration utilizing self-phase modulation in a highly nonlinear fiber ," Photon. Technol. Lett. 14, 319-321 (2002).

S. Radic, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," Photon. Technol. Lett. 15, 957-959 ( 2003).

Rev. Sci. Instrum. (1)

R. Trebino, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).

Other (4)

S. Bischoff, J. Mork, "All-optical signal regeneration at 40 Gbit/s using a Mach–Zehnder interferometer based on semiconductor optical amplifiers," Lasers Electro-Opt. Conf. (2000) pp. 345.

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," ECOC (1998) pp. 475-476.

L. Bramerie, "Cascadability and wavelength tunability assessment of a 2R regeneration device based on a 8 channel saturable absorber module," presented at the Opt. Fiber Conf. AnaheimCA (2007).

H. T. Nguyen, "New passive all-optical semiconductor device for bit-1 level noise reduction," presented at the Eur. Conf. Lasers Electro-Opt. Int. Quantum Electron. Conf. (CLEOE-IQEC) MunichGermany (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.