Abstract

We develop and experimentally validate a method to characterize linearly chirped fiber Bragg gratings (CFBGs) under local temperature perturbations for tunable spectral shaping. The heat distribution along the FBG is modeled by a Gaussian–Lorentzian function. The phase and apodization profiles of the CFBG are characterized by measuring the complex reflection spectrum and subsequently using inverse scattering. Finally, coupled mode theory is used to predict the transmittivity of the CFBG under the local temperature perturbations. As an application, we use our model to spectrally shape the spectrum of a gain-switched laser (GSL) and generate ultra-short, optimally designed pulses for high speed wireless data distribution in indoor environments.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J. P. Heritage, A. M. Weiner, "Advances in spectral optical code-division multiple-access communications," IEEE J. Sel. Topics. Quantum Elec. 13, 1351-1369 (2007).
  2. R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson, "Analysis of picosecond pulse shaper synthesis by spectral masking in a grating pulse compressor," IEEE J. Quantum Electron. QE-22, 682-696 (1986).
  3. J. A. Salehi, A. M. Weiner, J. P. Heritage, "Coherent ultrashort code-division multiple-access communication systems," J. Lightw. Technol. 8, 478-491 (1990).
  4. D. T. Neilson, R. Ryf, F. Pardo, V. A. Aksyuk, M. Simon, D. O. Lopez, D. M. Marom, S. Chandrasekhar, "MEMS-based channelized dispersion compensator with flat passbands," J. Lightw. Technol. 22, 101-105 (2004).
  5. H. Tsuda, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, T. Kurokawa, "Second- and third-order dispersion compensator using a high-resolution arrayed-waveguide grating," IEEE Photon. Technol. Lett. 11, 569-571 (1999).
  6. Y. Ikuma, H. Tsuda, "AWG-based tunable optical dispersion compensator with multiple lens structure," J. Lightw. Technol. 27, 5202-5207 (2009).
  7. M. Akbulut, A. M. Weiner, P. J. Miller, "Broadband all-order polarization mode dispersion compensation using liquid-crystal modulator arrays," J. Lightw. Technol. 24, 251-261 (2006).
  8. Y. W. Song, D. Starodubov, Z. Pan, Y. Xie, A. E. Willner, J. Feinberg, "Tunable WDM dispersion compensation with fixed bandwidth and fixed passband center wavelength using a uniform FBG," IEEE Photon. Technol. Lett. 14, 1193-1195 (2002).
  9. S. Matsumoto, T. Ohira, M. Takabayashi, K. Yoshiara, T. Sugihara, "Tunable dispersion equalizer with a divided thin-film heater for 40-Gb/s RZ transmissions," IEEE Photon. Technol. Lett. 13, 827-829 (2001).
  10. S. Doucet, S. LaRochelle, M. Morin, "Reconfigurable dispersion equalizer based on phase-apodized FBGs," J. Lightw. Technol. 26, 2899-2908 (2008).
  11. J. T. Kringlebotn, J.-L. Archambault, L. Reekie, D. N. Payne, "Er$^{3 +}$:Yb $^{3 +}$-copdoped fiber distributed feedback laser," Opt. Lett. 19, 2101-2103 (1994).
  12. Y. Kim, A. D. Simard, P. Cheretien, S. LaRochelle, "Millimiter-wave synthesizer based on spectral filtering of a phase-modulated laser using a chirped FBG with tunable distributed phase shift," J. Lightw. Technol. 27, 5183-5191 (2009).
  13. S. Roy, J. R. Foerster, V. S. Somayazulu, D. G. Leeper, "Ultra-wideband radio design: The promise of high-speed, short range wireless connectivity," Proc. IEEE 92, 295-311 (2004).
  14. “First report and order, (revision of part 15 of the commission's rules regarding ultra-wideband transmission systems),” adopted Feb. 14, 2002, released Apr. 22, 2002 US. Fed. Comm. Commission, .
  15. M. Abtahi, M. Mirshafiei, S. LaRochelle, L. A. Rusch, "All-optical 500 Mb/s UWB transceiver: An experimental demonstration," J. Lightw. Technol. 26, 2795-2802 (2008).
  16. M. Abtahi, M. Dastmalchi, S. LaRochelle, L. A. Rusch, "Generation of arbitrary UWB waveforms by spectral pulse-shaping and thermally-controlled apodized FBG," J. Lightw. Technol. 27, 5276-5283 (2009).
  17. K. O. Hill, G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightw. Technol. 15, 1263-1276 (1997).
  18. A. Rosenthal, M. Horowitz, "Inverse scattering algorithm for reconstruction strongly reflecting fiber Bragg grating," IEEE J. Quantum Electron. 39, 1018-1026 (2003).
  19. M. Dastmalchi, M. Abtahi, D. Lemus, L. A. Rusch, S. LaRochelle, "Simple and efficient UWB pulse generator," Bragg Gratings, Photosensitivity, Poling Glass Waveguides, OSA Tech. Dig. (2010).
  20. M. Mirshafiei, M. Abtahi, P. Larochelle, L. Rusch, "Pulse shapes that outperform traditional UWB antenna/waveform combination," Proc. IEEE Globecom Conf. (2010) pp. 1-5.

2009 (3)

Y. Ikuma, H. Tsuda, "AWG-based tunable optical dispersion compensator with multiple lens structure," J. Lightw. Technol. 27, 5202-5207 (2009).

Y. Kim, A. D. Simard, P. Cheretien, S. LaRochelle, "Millimiter-wave synthesizer based on spectral filtering of a phase-modulated laser using a chirped FBG with tunable distributed phase shift," J. Lightw. Technol. 27, 5183-5191 (2009).

M. Abtahi, M. Dastmalchi, S. LaRochelle, L. A. Rusch, "Generation of arbitrary UWB waveforms by spectral pulse-shaping and thermally-controlled apodized FBG," J. Lightw. Technol. 27, 5276-5283 (2009).

2008 (2)

S. Doucet, S. LaRochelle, M. Morin, "Reconfigurable dispersion equalizer based on phase-apodized FBGs," J. Lightw. Technol. 26, 2899-2908 (2008).

M. Abtahi, M. Mirshafiei, S. LaRochelle, L. A. Rusch, "All-optical 500 Mb/s UWB transceiver: An experimental demonstration," J. Lightw. Technol. 26, 2795-2802 (2008).

2007 (1)

J. P. Heritage, A. M. Weiner, "Advances in spectral optical code-division multiple-access communications," IEEE J. Sel. Topics. Quantum Elec. 13, 1351-1369 (2007).

2006 (1)

M. Akbulut, A. M. Weiner, P. J. Miller, "Broadband all-order polarization mode dispersion compensation using liquid-crystal modulator arrays," J. Lightw. Technol. 24, 251-261 (2006).

2004 (2)

D. T. Neilson, R. Ryf, F. Pardo, V. A. Aksyuk, M. Simon, D. O. Lopez, D. M. Marom, S. Chandrasekhar, "MEMS-based channelized dispersion compensator with flat passbands," J. Lightw. Technol. 22, 101-105 (2004).

S. Roy, J. R. Foerster, V. S. Somayazulu, D. G. Leeper, "Ultra-wideband radio design: The promise of high-speed, short range wireless connectivity," Proc. IEEE 92, 295-311 (2004).

2003 (1)

A. Rosenthal, M. Horowitz, "Inverse scattering algorithm for reconstruction strongly reflecting fiber Bragg grating," IEEE J. Quantum Electron. 39, 1018-1026 (2003).

2002 (1)

Y. W. Song, D. Starodubov, Z. Pan, Y. Xie, A. E. Willner, J. Feinberg, "Tunable WDM dispersion compensation with fixed bandwidth and fixed passband center wavelength using a uniform FBG," IEEE Photon. Technol. Lett. 14, 1193-1195 (2002).

2001 (1)

S. Matsumoto, T. Ohira, M. Takabayashi, K. Yoshiara, T. Sugihara, "Tunable dispersion equalizer with a divided thin-film heater for 40-Gb/s RZ transmissions," IEEE Photon. Technol. Lett. 13, 827-829 (2001).

1999 (1)

H. Tsuda, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, T. Kurokawa, "Second- and third-order dispersion compensator using a high-resolution arrayed-waveguide grating," IEEE Photon. Technol. Lett. 11, 569-571 (1999).

1997 (1)

K. O. Hill, G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightw. Technol. 15, 1263-1276 (1997).

1994 (1)

1990 (1)

J. A. Salehi, A. M. Weiner, J. P. Heritage, "Coherent ultrashort code-division multiple-access communication systems," J. Lightw. Technol. 8, 478-491 (1990).

1986 (1)

R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson, "Analysis of picosecond pulse shaper synthesis by spectral masking in a grating pulse compressor," IEEE J. Quantum Electron. QE-22, 682-696 (1986).

IEEE J. Quantum Electron. (2)

R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson, "Analysis of picosecond pulse shaper synthesis by spectral masking in a grating pulse compressor," IEEE J. Quantum Electron. QE-22, 682-696 (1986).

A. Rosenthal, M. Horowitz, "Inverse scattering algorithm for reconstruction strongly reflecting fiber Bragg grating," IEEE J. Quantum Electron. 39, 1018-1026 (2003).

IEEE J. Sel. Topics. Quantum Elec. (1)

J. P. Heritage, A. M. Weiner, "Advances in spectral optical code-division multiple-access communications," IEEE J. Sel. Topics. Quantum Elec. 13, 1351-1369 (2007).

IEEE Photon. Technol. Lett. (3)

H. Tsuda, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, T. Kurokawa, "Second- and third-order dispersion compensator using a high-resolution arrayed-waveguide grating," IEEE Photon. Technol. Lett. 11, 569-571 (1999).

Y. W. Song, D. Starodubov, Z. Pan, Y. Xie, A. E. Willner, J. Feinberg, "Tunable WDM dispersion compensation with fixed bandwidth and fixed passband center wavelength using a uniform FBG," IEEE Photon. Technol. Lett. 14, 1193-1195 (2002).

S. Matsumoto, T. Ohira, M. Takabayashi, K. Yoshiara, T. Sugihara, "Tunable dispersion equalizer with a divided thin-film heater for 40-Gb/s RZ transmissions," IEEE Photon. Technol. Lett. 13, 827-829 (2001).

J. Lightw. Technol. (9)

S. Doucet, S. LaRochelle, M. Morin, "Reconfigurable dispersion equalizer based on phase-apodized FBGs," J. Lightw. Technol. 26, 2899-2908 (2008).

Y. Ikuma, H. Tsuda, "AWG-based tunable optical dispersion compensator with multiple lens structure," J. Lightw. Technol. 27, 5202-5207 (2009).

M. Akbulut, A. M. Weiner, P. J. Miller, "Broadband all-order polarization mode dispersion compensation using liquid-crystal modulator arrays," J. Lightw. Technol. 24, 251-261 (2006).

J. A. Salehi, A. M. Weiner, J. P. Heritage, "Coherent ultrashort code-division multiple-access communication systems," J. Lightw. Technol. 8, 478-491 (1990).

D. T. Neilson, R. Ryf, F. Pardo, V. A. Aksyuk, M. Simon, D. O. Lopez, D. M. Marom, S. Chandrasekhar, "MEMS-based channelized dispersion compensator with flat passbands," J. Lightw. Technol. 22, 101-105 (2004).

Y. Kim, A. D. Simard, P. Cheretien, S. LaRochelle, "Millimiter-wave synthesizer based on spectral filtering of a phase-modulated laser using a chirped FBG with tunable distributed phase shift," J. Lightw. Technol. 27, 5183-5191 (2009).

M. Abtahi, M. Mirshafiei, S. LaRochelle, L. A. Rusch, "All-optical 500 Mb/s UWB transceiver: An experimental demonstration," J. Lightw. Technol. 26, 2795-2802 (2008).

M. Abtahi, M. Dastmalchi, S. LaRochelle, L. A. Rusch, "Generation of arbitrary UWB waveforms by spectral pulse-shaping and thermally-controlled apodized FBG," J. Lightw. Technol. 27, 5276-5283 (2009).

K. O. Hill, G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightw. Technol. 15, 1263-1276 (1997).

Opt. Lett. (1)

Proc. IEEE (1)

S. Roy, J. R. Foerster, V. S. Somayazulu, D. G. Leeper, "Ultra-wideband radio design: The promise of high-speed, short range wireless connectivity," Proc. IEEE 92, 295-311 (2004).

Other (3)

“First report and order, (revision of part 15 of the commission's rules regarding ultra-wideband transmission systems),” adopted Feb. 14, 2002, released Apr. 22, 2002 US. Fed. Comm. Commission, .

M. Dastmalchi, M. Abtahi, D. Lemus, L. A. Rusch, S. LaRochelle, "Simple and efficient UWB pulse generator," Bragg Gratings, Photosensitivity, Poling Glass Waveguides, OSA Tech. Dig. (2010).

M. Mirshafiei, M. Abtahi, P. Larochelle, L. Rusch, "Pulse shapes that outperform traditional UWB antenna/waveform combination," Proc. IEEE Globecom Conf. (2010) pp. 1-5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.