Abstract

We develop and experimentally validate a method to characterize linearly chirped fiber Bragg gratings (CFBGs) under local temperature perturbations for tunable spectral shaping. The heat distribution along the FBG is modeled by a Gaussian–Lorentzian function. The phase and apodization profiles of the CFBG are characterized by measuring the complex reflection spectrum and subsequently using inverse scattering. Finally, coupled mode theory is used to predict the transmittivity of the CFBG under the local temperature perturbations. As an application, we use our model to spectrally shape the spectrum of a gain-switched laser (GSL) and generate ultra-short, optimally designed pulses for high speed wireless data distribution in indoor environments.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription