Abstract

Structural Health Monitoring (SHM) can be understood as the integration of sensing and intelligence to enable the structure loading and damage-provoking conditions to be recorded, analyzed, localized, and predicted in such a way that nondestructive testing becomes an integral part of them. In addition, SHM systems can include actuation devices to take proper reaction or correction actions. SHM sensing requirements are very well suited for the application of optical fiber sensors (OFS), in particular, to provide integrated, quasi-distributed or fully distributed technologies. In this tutorial, after a brief introduction of the basic SHM concepts, the main fiber optic techniques available for this application are reviewed, emphasizing the four most successful ones. Then, several examples of the use of OFS in real structures are also addressed, including those from the renewable energy, transportation, civil engineering and the oil and gas industry sectors. Finally, the most relevant current technical challenges and the key sector markets are identified. This paper provides a tutorial introduction, a comprehensive background on this subject and also a forecast of the future of OFS for SHM. In addition, some of the challenges to be faced in the near future are addressed.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. B. Glisic, D. Inaudi, N. Casanova, "SHM process as perceived through 350 projects," Smart Struct. Mater./NDE Symp. (2010) pp. 76480P.
  2. ISIS CanadaGuidelines for Structural Health Monitoring Canada (2001).
  3. USDOT, FHWA, and FTA2006 Status of the Nation's Highways, Bridges and Transit: Conditions and Perfomance (2007).
  4. C. Boller, "Structural health monitoring in aeroespace," Advance Course on SHM BarceloneSpain (2009).
  5. J. M. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, 2002) pp. 1-21.
  6. J. M. López-Higuera, B. Culshaw, Engineering a High-Tech Business: Entrepreneurial Experiences and Insights (SPIE, 2008).
  7. D. Inaudi, Handbook of Optical Fibre Sensing Technology (Wiley, 2002) pp. 517-542.
  8. S. Casciati, M. Domaneschi, D. Inaudi, "Damage assessment from SOFO dynamic measurements," 17th Int. Conf. Opt. Fibre Sens., Parts 1 and 2 (2005) pp. 1048-1051, 1088.
  9. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  10. R. Kashyap, J. M. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, 2002).
  11. Y.-J. Rao, "Long-period fiber gratings for low-cost sensing (invited paper)," 17th Int. Conf. Opt. Fibre Sens. (OFS) (2005) pp. 13-16.
  12. J. M. López-Higuera, Optical Sensors (Universidad de Cantabria, 1998).
  13. M. Lopez-Amo, J. M. Lopez-Higuera, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science Publishers Ltd., 2010).
  14. E. Wolfgang, "Applications of FBG sensors. Invited tutorial," 19th Int. Conf. Opt. Fibre Sens. (OFS) PerthAustralia (2008).
  15. G. P. Agraval, Nonlinear Fiber Optics. Quantum Electronics-Pronciples and Applications (Academic, 1995).
  16. R. H. West, H. Buker, E. J. Friebele, H. Henschel, P. B. Lyons, "The use of optical-time domain reflectometers to measure radiation-induced losses in optical fibers," J. Lightwave Technol. 12, 614-620 (1994).
  17. D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, "Potential of stimulated Brillouin-scattering as sensing mechanism for distributed temperature sensors," Electron. Lett. 25, 913-915 (1989).
  18. A. J. Rogers, Handbook of Optical Fibre Sensing Technology (Wiley, 2002) pp. 271-308.
  19. T. Horiguchi, T. Kurashima, Y. Koyamada, "Measurement of temperature and strain distribution by Brillouin frequency-shift in silica optical fibers," Distrib. Multiplexed Fiber Opt. Sens. II 1797, 2-13 (1993).
  20. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, "Brillouin optical-fiber time-domain reflectometry," IEICE Trans. Commun. E76B, 382-390 (1993).
  21. M. Nikles, L. Thevenaz, P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
  22. F. P. Kapron, B. P. Adams, E. A. Thomas, J. W. Peters, "Fiber-optic reflection measurements using OCWR and OTDR techniques," J. Lightwave Technol. 7, 1234-1241 (1989).
  23. S. A. Kingsley, D. E. N. Davies, "OFDR diagnostics for fiber and integrated-optic systems," Electron. Lett. 21, 434-435 (1985).
  24. W. V. Sorin, "Low coherence reflectometry for high accuaracy sensing," 9th Int. Conf. Opt. Fibre Sens. (OFS) (1993) pp. 243-246.
  25. J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, "Distributed optical fiber Raman temperature sensor using a semiconductor light-source and detector," Electron. Lett. 21, 569-570 (1985).
  26. X. Y. Bao, "32 km Brillouin loss based distributed temperature sensor," 9th Opt. Fiber Sens. Conf. (1993).
  27. T. Kurashima, T. Horiguchi, M. Tateda, "Distributed-temperature sensing using stimulated Brillouin-scattering in optical silica fibers," Opt. Lett. 15, 1038-1040 (1990).
  28. K. Hotate, "Coherent photonic sensing," Sens. Update 6, 131-162 (1999).
  29. K. Hotate, "Correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering," 17th Int. Conf. Opt. Fibre Sens. (OFS) (2005) pp. 62-67.
  30. S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, M. S. Wolfe, "High resolution distributed strain or temperature measurements in single-and multi-mode fiber using swpt-wavelength interferometry," 18th Int. Conf. Opt. Fibre Sens. (OFS) (2006).
  31. M. N. Alahbabi, Y. T. Cho, T. P. Newson, "150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification," J. Opt. Soc. Amer. B—Opt. Phys. 22, 1321-1324 (2005).
  32. K. Y. Song, Z. Y. He, K. Hotate, "Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis," Opt. Lett. 31, 2526-2528 (2006).
  33. Y. Mizuno, Z. Y. He, K. Hotate, "Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme," Opt. Exp. 17, 9040-9046 (2009).
  34. F. Rodriguez-Barrios, "Distributed Brillouin fiber sensor assisted by first-order Raman amplification," J. Lightwave Technol. 28, 2162-2172 (2010).
  35. C. Galindez, F. J. Madruga, J. M. Lopez-Higuera, "Influence of humidity on the measurement of brillouin frequency shift," IEEE Photon. Technol. Lett. 20, 1959-1961 (2008).
  36. C. Galindez, F. J. Madruga, J. M. Lopez-Higuera, "Brillouin frequency shift of standard optical fibers set in water vapor medium," Opt. Lett. 35, 28-30 (2010).
  37. J. M. Lopez-Higuera, Photonics Sensing Technologies: Successful Techniques and Trends (CSIC, 2007) pp. 33-48.
  38. E. Cibula, D. Donlagic, "All-fiber Fabry–Perot strain sensor," 2nd Eur. Workshop Opt. Fibre Sens. (2004) pp. 180-183.
  39. D. Hofmann, F. Basedau, W. R. Habel, R. Gloetzl, "Lightning-safe diaphragm pressure gauge for geotechnical applications using a long-term reliable absolute EFPI sensor," 2nd Eur. Workshop Opt. Fibre Sens. (2004) pp. 128-131.
  40. F. J. Arregui, K. L. Cooper, Y. J. Liu, I. R. Matias, R. O. Claus, "Optical fiber humidity sensor with a fast response time using the ionic self-assembly method," IEICE Trans. Electron. E83C, 360-365 (2000).
  41. R. Claus, "Self-assembled nanostructured optical fiber sensors," 17th Int. Conf. Opt. Fibre Sens., Parts 1 and 2 (2005) pp. 138-141.
  42. T. Horiguchi, A. J. Rogers, W. C. Michie, G. Stewart, B. Culshaw, Optical Fiber Sensors—Applications, Analysis and Future Trends (Artech, 1997).
  43. V. Lyöri, Structural Monitoring With Fibre-Optic Sensors Using the Pulsed Time-of-Flight Method and Other Measurement Techniques Ph.D. dissertation Dept. of Electr. and Inform. Eng., Faculty of Technol. Univ. of OuluOuluFinland (2007).
  44. A. Cobo, J. Echevarria, Handbook of Optical Fibre Sensing Technology (Wiley, 2002) pp. 209-226.
  45. R. Willsch, W. Ecke, G. Schwotzer, "Spectrally encoded optical fibre sensor systems and their application in process control, environmental and structural monitoring (Invited paper)," Opt. Fibers: Applicat. 5952, 59520I-1-59520I-14 (2005).
  46. B. Glišic, D. Inaudi, Fibre Optic Methods for Structural Health Monitoring (Wiley-Interscience, 2007).
  47. W. C. Michie, B. Culshaw, A. McLean, M. Konstantaki, S. Hadjiloucas, "Distributed water ingress and water potential measurements using fibre optics," Cement Concrete Composites 19, 35-44 (1997).
  48. T. L. Yeo, T. Sun, K. T. V. Grattan, "Fibre-optic sensor technologies for humidity and moisture measurement," Sens. Actuat. A—Phys. 144, 280-295 (2008).
  49. C. Bariain, I. R. Matias, F. J. Arregui, M. Lopez-Amo, "Optical fiber humidity sensor based on a tapered fiber coated with agarose gel," Sens. Actuat. B—Chem. 69, 127-131 (2000).
  50. F. J. Arregui, Y. J. Liu, I. R. Matias, R. O. Claus, "Optical fiber humidity sensor using a nano Fabry–Perot cavity formed by the ionic self-assembly method," Sens. Actuat. B—Chem. 59, 54-59 (1999).
  51. T. L. Yeo, "Demonstration of a fibre-optic sensing technique for the measurement of moisture absorption in concrete," Smart Mater. Struct. 15, N40-N45 (2006).
  52. P. L. Fuhr, D. R. Huston, "Corrosion detection in reinforced concrete roadways and bridges via embedded fiber optic sensors," Smart Mater. Struct. 7, 217-228 (1998).
  53. T. H. Ha, "Role of sensors in corrosion monitoring and durability assessment in concrete structures: the state of the art," Sens. Mater. 16, 133-158 (2004).
  54. F. Laferriere, D. Inaudi, P. Kronenberg, I. F. C. Smith, "A new system for early chloride detection in concrete," Smart Mater. Struct. 17, (2008).
  55. W. Grahn, P. Makedonski, J. Wichern, W. Kowalsky, S. Wiese, "Fiberoptical sensors for in situ monitoring of moisture and pH-value in reinforced concrete," Imag. Spectrometry VII (2001) pp. 395-403.
  56. A. A. Panova, P. Pantano, D. R. Walt, "In situ fluorescence imaging of localized corrosion with a pH-sensitive imaging fiber," Anal. Chem. 69, 1635-1641 (1997).
  57. J. Lin, "Recent development and applications of optical and fiber-optic pH sensors," Trac-Trends Anal. Chem. 19, 541-552 (2000).
  58. S. Bey, C. C. C. Lam, T. Sun, K. T. V. Grattan, "Chloride ion optical sensing using a long period grating pair," Sens. Actuat. A—Phys. 141, 390-395 (2008).
  59. M. Benounis, N. Jaffrezic-Renault, "Elaboration of an optical fibre corrosion sensor for aircraft applications," Sens. Actuat. B—Chem. 100, 1-8 (2004).
  60. A. M. Cardenas-Valencia, "Development of stripped-cladding optical fiber sensors for continuous monitoring—Part II: Referencing method for spectral sensing of environmental corrosion," Sens. Actuat. B—Chem. 122, 410-418 (2007).
  61. R. C. Jorgenson, S. S. Yee, "A fiberoptic chemical sensor-based on surface-plasmon resonance," Sens. Actuat. B—Chem. 12, 213-220 (1993).
  62. Y. C. Kim, J. F. Masson, K. S. Booksh, "Single-crystal sapphire-fiber optic sensors based on surface plasmon resonance spectroscopy for in situ monitoring," Talanta 67, 908-917 (2005).
  63. R. Javaherdashti, Microbiologically Influenced Corrosion: An Engineering Insight (Springer-Verlag, 2008).
  64. A. B. Ganesh, T. K. Radhakrishnan, "Fiber-optic sensor for the estimation of microbial corrosion of metals," Optik 120, 479-483 (2009).
  65. M. Shenoy, H. Huang, "An optical fiber-based corrosion sensor based on laser light reflection," Sens. Smart Struct. Technol. Civil, Mech., Aerosp. Syst. (2010) pp. 76473O-1-76473O-9.
  66. C. Yang, Z. Wu, Y. Zhang, "Structural health monitoring of PC structures with novel types of distributed sensors," Nondestruct. Characterization Composite Mater., Aerosp. Eng., Civil Infrastruct., Homeland Security (2010) pp. 76490A-1-76490A-11.
  67. C. Doyle, "In situ process and condition monitoring of advanced fibre-reinforced composite materials using optical fibre sensors," Smart Mater. Struct. 7, 145-158 (1998).
  68. V. M. Murukeshan, P. Y. Chan, L. S. Ong, L. K. Seah, "Cure monitoring of smart composites using Fiber Bragg Grating based embedded sensors," Sens. Actuat. A—Phys. 79, 153-161 (2000).
  69. F. Ansari, Sensing Issues in Civil Structural Health Monitoring (Kluwer, 2005).
  70. A. MacLean, "Hydrogel/fibre optic sensor for distributed measurement of humidity and pH value," Smart Struct. Mater. 1998: Sens. Phenomena Meas. Instrum. Smart Struct. Mater. 3330, 134-144 (1998).
  71. J. Yi, K. Lee, J. Park, W. Park, "Structural health monitoring system for “Uldolmok” tidal current power pilot plant and its applications," 28th Int. Conf. Ocean, Offshore Arctic Eng. (2009) pp. 1139-1144.
  72. C. C. Ciang, J. R. Lee, H. J. Bang, "Structural health monitoring for a wind turbine system: A review of damage detection methods," Meas. Sci. Technol. 19, 122001-1-122001-20 (2008).
  73. K. Schroeder, W. Ecke, J. Apitz, E. Lembke, G. Lenschow, "A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade," Meas. Sci. Technol. 17, 1167-1172 (2006).
  74. X. Y. Bao, C. Huang, X. D. Zeng, A. Arcand, P. Sullivan, "Simultaneous strain and temperature monitoring of the composite cure with a Brillouin-scattering-based distributed sensor," Opt. Eng. 41, 1496-1501 (2002).
  75. G. Kister, "Methodology and integrity monitoring of foundation concrete piles using Bragg grating optical fibre sensors," Eng. Struct. 29, 2048-2055 (2007).
  76. J. Wernicke, S. Kuhnt, R. Byars, "Structural monitoring system for offshore wind turbine foundations structures," Eur. Wind Energy Conf. Exhib. AthensGR (2006).
  77. T. A. Hampshire, H. Adeli, "Monitoring the behavior of steel structures using distributed optical fiber sensors," J. Construct. Steel Res. 53, 267-281 (2000).
  78. L. F. Zou, "Distributed Brillouin scattering sensor for discrimination of wall-thinning defects in steel pipe under internal pressure," Appl. Opt. 43, 1583-1588 (2004).
  79. M. C. Homola, P. J. Nicklasson, P. A. Sundsbo, "Ice sensors for wind turbines," Cold Regions Sci. Technol. 46, 125-131 (2006).
  80. H. Tsutsui, A. Kawamata, T. Sanda, N. Takeda, "Detection of impact damage of stiffened composite panels using embedded small-diameter optical fibers," Smart Mater. Struct. 13, 1284-1290 (2004).
  81. E. Bocherens, "Damage detection in a radome sandwich material with embedded fiber optic sensors," Smart Mater. Struct. 9, 310-315 (2000).
  82. S. Kramer, F. Leon, B. Appert, "Fiber optic sensor network for lightning impact localization and classification in wind turbines," IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst. (2006) pp. 173-178.
  83. L. H. Liu, H. Zhang, Q. D. Zhao, Y. H. Liu, F. Li, "Temperature-independent FBG pressure sensor with high sensitivity," Opt. Fiber Technol. 13, 78-80 (2007).
  84. J. M. Lopez-Higuera, M. A. Morante, A. Cobo, "Simple low-frequency optical fiber accelerometer with large rotating machine monitoring applications," J. Lightw. Technol. 15, 1120-1130 (1997).
  85. C. Baldwin, J. Kiddy, P. Samuel, J. Coker, D. Pines, "Fiber optic sensors monitoring transmission ring gears," Photon. Transp. Ind.: Auto Aerosp. 6758, 675808.1-675808.9 (2007).
  86. L. Kruger, P. L. Swart, A. A. Chtcherbakov, A. J. van Wyk, "Non-contact torsion sensor using fibre Bragg gratings," Meas. Sci. Technol. 15, 1448-1452 (2004).
  87. K. Bohnert, P. Gabus, J. Nehring, H. Brandle, "Temperature and vibration insensitive fiber-optic current sensor," J. Lightwave Technol. 20, 267-276 (2002).
  88. H. Y. Tam, "Utilization of fiber optic Bragg Grating sensing systems for health monitoring in railway applications," Struct. Health Monit.: Quantification, Validat., Implement. (2007) pp. 1824-1831.
  89. C. Wang, H. Wang, M. Chen, "Structural health monitoring activities of applying optical fiber sensors in Taiwan," 18th Int. Conf. Opt. Fibre Sens. (OFS) (2006).
  90. J. P. Ou, H. Li, D. Zhongdong, Structural Health Monitoring and Intelligent Infraestructure (Taylor and Francis, 2006).
  91. D. R. Hjelme, L. Bjerkan, S. Neegard, J. S. Rambech, J. V. Aarsnes, "Application of Bragg grating sensors in the characterization of scaled marine vehicle models," Appl. Opt. 36, 328-336 (1997).
  92. K. Kageyama, "Smart marine structures: An approach to the monitoring of ship structures with fiber-optic sensors," Smart Mater. Struct. 7, 472-478 (1998).
  93. C. Baldwin, J. Kiddy, T. Salter, P. Chen, J. Niemczuk, "Fiber optic structural health monitoring system: Rough sea trials of the RV Triton," Oceans 2002 MTS/IEEE Conf. Exhib. pp. 1806-1813.
  94. G. Wang, "Ship hull structure monitoring using fibre optic sensors," Smart Mater. Struct. 10, 472-478 (2001).
  95. H. C. H. Li, I. Herszberg, A. P. Mouritz, C. E. Davis, S. C. Galea, "Sensitivity of embedded fibre optic Bragg grating sensors to disbonds in bonded composite ship joints," Composite Struct. 66, 239-248 (2004).
  96. I. J. Read, P. D. Foote, "Sea and flight trials of optical fibre Bragg grating strain sensing systems," Smart Mater. Struct. 10, 1085-1094 (2001).
  97. I. McKenzie, N. Karafolas, "Fiber optic sensing in space structures: The experience of the European Space Agency," 17th Int. Conf. Opt. Fibre Sens., Parts 1 and 2 (2005) pp. 262-269.
  98. E. J. Friebele, "Optical fiber sensors for spacecraft applications," Smart Mater. Struct. 8, 813-838 (1999).
  99. H. Sekine, S. E. Fujimoto, T. Okabe, N. Takeda, T. Yokobori, "Structural health monitoring of cracked aircraft panels repaired with bonded patches using fiber Bragg grating sensors," Appl. Composite Mater. 13, 87-98 (2006).
  100. W. Ecke, I. Latka, R. Willsch, A. Reutlinger, R. Graue, "Fibre optic sensor network for spacecraft health monitoring," Meas. Sci. Technol. 12, 974-980 (2001).
  101. J. R. Lee, "In-flight health monitoring of a subscale wing using a fiber Bragg grating sensor system," Smart Mater. Struct. 12, 147-155 (2003).
  102. A. Cusano, "Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors," IEEE Sens. J. 6, 67-77 (2006).
  103. S. Takeda, Y. Aoki, T. Ishikawa, N. Takeda, H. Kikukawa, "Structural health monitoring of composite wing structure during durability test," Composite Struct. 79, 133-139 (2007).
  104. Y. Okabe, S. Yashiro, T. Kosaka, N. Takeda, "Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors," Smart Mater. Struct. 9, 832-838 (2000).
  105. S. Briancourt, T. Seymour, "Aircraft landing gear for load measurement in event of hard landing or off-runway excursion, has fiber optic load sensor which monitors load in a component of landing gear such as axle," US2009026313-A1, to Airbus Uk Ltd (Eads) (2009).
  106. M. Austin, "Sensor application opportunities for aerospace propulsion systems," Avion., Fiber-Opt. Phototon. Photon. Technol. Conf. (2009) pp. 21-22.
  107. T. Yari, "Monitoring aircraft structural health using optical fiber sensors," Mitsubishi Heavy Ind. Tech. Rev. 45, 5-8 (2008).
  108. R. C. Tennyson, A. A. Mufti, S. Rizkalla, G. Tadros, B. Benmokrane, "Structural health monitoring of innovative bridges in Canada with fiber optic sensors," Smart Mater. Struct. 10, 560-573 (2001).
  109. J. M. Lopez-Higuera, C. J. Misas, A. Q. Incera, J. E. Cuenca, "Fiber optic civil structure monitoring system," Opt. Eng. 44, 044401-1-044401-10 (2005).
  110. C. Barbosa, "Weldable fibre Bragg grating sensors for steel bridge monitoring," Meas. Sci. Technol. 19, 125305-1-125305-10 (2008).
  111. S. Vohra, G. Johnson, M. Todd, B. Danver, B. Althouse, "Distributed strain monitoring with arrays of fiber Bragg grating sensors on an in-construction steel box-girder bridge," IEICE Trans. Electron. E83C, 454-461 (2000).
  112. D. Inaudi, "Monitoring of a concrete arch bridge during construction," Smart Struct. Mater.: Smart Syst. Bridges, Struct., Highways (2002) pp. 146-153.
  113. S. Vurpillot, N. Casanova, D. Inaudi, P. Kronenberg, "Bridge spatial displacement monitoring with 100 fiber optic deformation sensors: Sensors network and preliminary results," SPIE Conf. Smart Struct. Mater. (1997) pp. 51.
  114. D. Inaudi, "Structural health monitoring system for the new I-35W St Anthony Falls Bridge," 4th Int. Conf. Struct. Health Monitor. Intell. Infrastruct. (SHMII-4) (2009) pp. 10.
  115. F. Matta, F. Bastianini, N. Galati, P. Casadei, A. Nanni, "Distributed strain measurement in steel bridge with fiber optic sensors: Validation through diagnostic load test," J. Perform. Const. Facilities 22, 264-273 (2008).
  116. H. Iwaki, H. Yarnakawa, A. Mita, "Health monitoring system using FBG-based sensors for a 12-story building with column dampers," Smart Struct. Mater.: Smart Syst. Bridges, Struct., Highways (2001) pp. 471-478.
  117. G. Rossi, E. Speranzini, "Fiber Bragg grating strain sensors for in situ analysis and monitoring of fiber-reinforced historical civil structures," 8th Int. Conf. Vibrat. Meas. Laser Tech.: Adv. Appl. (2008).
  118. M. Whelan, D. Albrecht, A. Capsoni, "Remote structural monitoring of the cathedral of Como using an optical fiber Bragg sensor system," Smart Struct. Mater.: Smart Sens. Technol. Meas. Syst. (2002) pp. 242-252.
  119. L. M. Ortega, Monitoring of the Semi-Floating Dock of “La Condamine” Harbour—Monaco (SAMCO Newsletter, 2003) pp. 2.
  120. O. V. Butov, "Versatile in-fiber Bragg grating pressure sensor for oil and gas industry," 18th Int. Conf. Opt. Fibre Sens. (OFS) (2006).
  121. P. M. Nellen, "Reliability of fiber Bragg grating based sensors for downhole applications," Sens. Actuat. A—Phys. 103, 364-376 (2003).
  122. X. G. Qiao, M. Fiddy, "Distributed optical fiber Bragg grating sensor for simultaneous measurement of pressure and temperature in the oil and gas downhole," Active Passive Opt. Compon. WDM Commun. II (2002) pp. 554-558.
  123. T. S. Li, "High pressure and temperature sensing for the downhole," Sens. Harsh Environ. III (2007) pp. 75706-75706.
  124. Z. Y. Zhong, X. L. Zhi, W. J. Yi, "Oil well real-time monitoring with downhole permanent FBG sensor network," IEEE Int. Conf. Control Autom. (2007) pp. 701-704.
  125. S. H. Aref, H. Latifi, M. I. Zibaii, M. Afshari, "Fiber optic Fabry–Perot pressure sensor with low sensitivity to temperature changes for downhole application," Opt. Commun. 269, 322-330 (2007).
  126. S. H. Aref, M. I. Zibaii, H. Latifi, "An improved fiber optic pressure and temperature sensor for downhole application," Meas. Sci. Technol. 20, 1-6 (2009).
  127. H. Y. Fu, "High pressure sensor based on photonic crystal fiber for downhole application," Appl. Opt. 49, 2639-2643 (2010).
  128. Z. Bai, "Conduit damage and leakage position locating instrument for oil gas pipeline in oil industry, has locating part connected with microcomputer, and distributed optical fiber sensor connected with photoelectric emitter and receiver," CN2901274-Y, to China Rock Oil Natural Gas Group Company (2010).
  129. T. Bosselmann, "Method for measuring temperature and/or pressure in underwater pipeline in offshore region of oil- and gas conveying systems, involves utilizing light conductor as sensor and guiding light conductor parallel to pipeline," DE102008056087-A1; WO2010052126-A1, to Siemens Ag (2010).
  130. R. Hampson, A. Hartog, G. P. Lees, A. P. Strong, K. Williams, "Optical fiber sensor system for condition monitoring of e.g., pipeline, has reflectometers of interrogation and laser pumping sub-systems, that are connected to left end of upper sensing fiber and right end of lower sensing fiber," WO2010034988-A1, to Schlumberger Holdings Ltd.; Schlumberger Canada Ltd. (2010).
  131. D. J. Hill, M. McEwen-King, "Method for tracking movement pig in pipeline e.g., oil and gas pipeline, involves processing return from each of several discrete longitudinal sensing portions to detect acoustic signature associated with movement of pig in the pipeline," WO2010020781-A1, to Qinetiq Ltd. (2010).
  132. H. Yang, "Multi-sensor system for continuously monitoring and controlling oil field intelligent well/pipeline, has node processor connected with central processor through channel that is processed using wireless communication, optical fiber or cable," CN101706650-A, to Yang H (2010).
  133. W. J. Zhang, Q. Wang, "Natural gas pipeline leakage detection based on optic fiber interferometer sensor in laboratory-scale experiment," 8th Int. Symp. Distrib. Comput. Appl. Bus., Eng. Sci. (DCABES) (2009) pp. 201-203.
  134. S. C. Huang, W. W. Lin, M. T. Tsai, M. H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sens. Actuat. A—Phys. 135, 570-579 (2007).
  135. J. M. López-Higuera, "Fibre optic sensors in structural health monitoring (invited paper)," OFC/NFOEC 2010 San DiegoCA (2010).
  136. C. R. Farrar, K. Worden, "An introduction to structural health monitoring," Philos. Trans. R. Soc. A—Math. Phys. Eng. Sci. 365, 303-315 (2007).
  137. Global Optoelectronics Industry Market Report and Forecast Optoelectronics Industry Development Association (OIDA) (2009).

2010 (3)

2009 (3)

S. H. Aref, M. I. Zibaii, H. Latifi, "An improved fiber optic pressure and temperature sensor for downhole application," Meas. Sci. Technol. 20, 1-6 (2009).

Y. Mizuno, Z. Y. He, K. Hotate, "Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme," Opt. Exp. 17, 9040-9046 (2009).

A. B. Ganesh, T. K. Radhakrishnan, "Fiber-optic sensor for the estimation of microbial corrosion of metals," Optik 120, 479-483 (2009).

2008 (8)

C. C. Ciang, J. R. Lee, H. J. Bang, "Structural health monitoring for a wind turbine system: A review of damage detection methods," Meas. Sci. Technol. 19, 122001-1-122001-20 (2008).

T. Yari, "Monitoring aircraft structural health using optical fiber sensors," Mitsubishi Heavy Ind. Tech. Rev. 45, 5-8 (2008).

C. Barbosa, "Weldable fibre Bragg grating sensors for steel bridge monitoring," Meas. Sci. Technol. 19, 125305-1-125305-10 (2008).

T. L. Yeo, T. Sun, K. T. V. Grattan, "Fibre-optic sensor technologies for humidity and moisture measurement," Sens. Actuat. A—Phys. 144, 280-295 (2008).

F. Laferriere, D. Inaudi, P. Kronenberg, I. F. C. Smith, "A new system for early chloride detection in concrete," Smart Mater. Struct. 17, (2008).

S. Bey, C. C. C. Lam, T. Sun, K. T. V. Grattan, "Chloride ion optical sensing using a long period grating pair," Sens. Actuat. A—Phys. 141, 390-395 (2008).

C. Galindez, F. J. Madruga, J. M. Lopez-Higuera, "Influence of humidity on the measurement of brillouin frequency shift," IEEE Photon. Technol. Lett. 20, 1959-1961 (2008).

F. Matta, F. Bastianini, N. Galati, P. Casadei, A. Nanni, "Distributed strain measurement in steel bridge with fiber optic sensors: Validation through diagnostic load test," J. Perform. Const. Facilities 22, 264-273 (2008).

2007 (8)

S. H. Aref, H. Latifi, M. I. Zibaii, M. Afshari, "Fiber optic Fabry–Perot pressure sensor with low sensitivity to temperature changes for downhole application," Opt. Commun. 269, 322-330 (2007).

S. C. Huang, W. W. Lin, M. T. Tsai, M. H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sens. Actuat. A—Phys. 135, 570-579 (2007).

C. R. Farrar, K. Worden, "An introduction to structural health monitoring," Philos. Trans. R. Soc. A—Math. Phys. Eng. Sci. 365, 303-315 (2007).

A. M. Cardenas-Valencia, "Development of stripped-cladding optical fiber sensors for continuous monitoring—Part II: Referencing method for spectral sensing of environmental corrosion," Sens. Actuat. B—Chem. 122, 410-418 (2007).

S. Takeda, Y. Aoki, T. Ishikawa, N. Takeda, H. Kikukawa, "Structural health monitoring of composite wing structure during durability test," Composite Struct. 79, 133-139 (2007).

G. Kister, "Methodology and integrity monitoring of foundation concrete piles using Bragg grating optical fibre sensors," Eng. Struct. 29, 2048-2055 (2007).

L. H. Liu, H. Zhang, Q. D. Zhao, Y. H. Liu, F. Li, "Temperature-independent FBG pressure sensor with high sensitivity," Opt. Fiber Technol. 13, 78-80 (2007).

C. Baldwin, J. Kiddy, P. Samuel, J. Coker, D. Pines, "Fiber optic sensors monitoring transmission ring gears," Photon. Transp. Ind.: Auto Aerosp. 6758, 675808.1-675808.9 (2007).

2006 (6)

M. C. Homola, P. J. Nicklasson, P. A. Sundsbo, "Ice sensors for wind turbines," Cold Regions Sci. Technol. 46, 125-131 (2006).

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, G. Lenschow, "A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade," Meas. Sci. Technol. 17, 1167-1172 (2006).

A. Cusano, "Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors," IEEE Sens. J. 6, 67-77 (2006).

H. Sekine, S. E. Fujimoto, T. Okabe, N. Takeda, T. Yokobori, "Structural health monitoring of cracked aircraft panels repaired with bonded patches using fiber Bragg grating sensors," Appl. Composite Mater. 13, 87-98 (2006).

T. L. Yeo, "Demonstration of a fibre-optic sensing technique for the measurement of moisture absorption in concrete," Smart Mater. Struct. 15, N40-N45 (2006).

K. Y. Song, Z. Y. He, K. Hotate, "Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis," Opt. Lett. 31, 2526-2528 (2006).

2005 (4)

M. N. Alahbabi, Y. T. Cho, T. P. Newson, "150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification," J. Opt. Soc. Amer. B—Opt. Phys. 22, 1321-1324 (2005).

R. Willsch, W. Ecke, G. Schwotzer, "Spectrally encoded optical fibre sensor systems and their application in process control, environmental and structural monitoring (Invited paper)," Opt. Fibers: Applicat. 5952, 59520I-1-59520I-14 (2005).

Y. C. Kim, J. F. Masson, K. S. Booksh, "Single-crystal sapphire-fiber optic sensors based on surface plasmon resonance spectroscopy for in situ monitoring," Talanta 67, 908-917 (2005).

J. M. Lopez-Higuera, C. J. Misas, A. Q. Incera, J. E. Cuenca, "Fiber optic civil structure monitoring system," Opt. Eng. 44, 044401-1-044401-10 (2005).

2004 (6)

L. F. Zou, "Distributed Brillouin scattering sensor for discrimination of wall-thinning defects in steel pipe under internal pressure," Appl. Opt. 43, 1583-1588 (2004).

H. C. H. Li, I. Herszberg, A. P. Mouritz, C. E. Davis, S. C. Galea, "Sensitivity of embedded fibre optic Bragg grating sensors to disbonds in bonded composite ship joints," Composite Struct. 66, 239-248 (2004).

H. Tsutsui, A. Kawamata, T. Sanda, N. Takeda, "Detection of impact damage of stiffened composite panels using embedded small-diameter optical fibers," Smart Mater. Struct. 13, 1284-1290 (2004).

L. Kruger, P. L. Swart, A. A. Chtcherbakov, A. J. van Wyk, "Non-contact torsion sensor using fibre Bragg gratings," Meas. Sci. Technol. 15, 1448-1452 (2004).

M. Benounis, N. Jaffrezic-Renault, "Elaboration of an optical fibre corrosion sensor for aircraft applications," Sens. Actuat. B—Chem. 100, 1-8 (2004).

T. H. Ha, "Role of sensors in corrosion monitoring and durability assessment in concrete structures: the state of the art," Sens. Mater. 16, 133-158 (2004).

2003 (2)

J. R. Lee, "In-flight health monitoring of a subscale wing using a fiber Bragg grating sensor system," Smart Mater. Struct. 12, 147-155 (2003).

P. M. Nellen, "Reliability of fiber Bragg grating based sensors for downhole applications," Sens. Actuat. A—Phys. 103, 364-376 (2003).

2002 (2)

K. Bohnert, P. Gabus, J. Nehring, H. Brandle, "Temperature and vibration insensitive fiber-optic current sensor," J. Lightwave Technol. 20, 267-276 (2002).

X. Y. Bao, C. Huang, X. D. Zeng, A. Arcand, P. Sullivan, "Simultaneous strain and temperature monitoring of the composite cure with a Brillouin-scattering-based distributed sensor," Opt. Eng. 41, 1496-1501 (2002).

2001 (4)

G. Wang, "Ship hull structure monitoring using fibre optic sensors," Smart Mater. Struct. 10, 472-478 (2001).

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, R. Graue, "Fibre optic sensor network for spacecraft health monitoring," Meas. Sci. Technol. 12, 974-980 (2001).

I. J. Read, P. D. Foote, "Sea and flight trials of optical fibre Bragg grating strain sensing systems," Smart Mater. Struct. 10, 1085-1094 (2001).

R. C. Tennyson, A. A. Mufti, S. Rizkalla, G. Tadros, B. Benmokrane, "Structural health monitoring of innovative bridges in Canada with fiber optic sensors," Smart Mater. Struct. 10, 560-573 (2001).

2000 (8)

Y. Okabe, S. Yashiro, T. Kosaka, N. Takeda, "Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors," Smart Mater. Struct. 9, 832-838 (2000).

S. Vohra, G. Johnson, M. Todd, B. Danver, B. Althouse, "Distributed strain monitoring with arrays of fiber Bragg grating sensors on an in-construction steel box-girder bridge," IEICE Trans. Electron. E83C, 454-461 (2000).

T. A. Hampshire, H. Adeli, "Monitoring the behavior of steel structures using distributed optical fiber sensors," J. Construct. Steel Res. 53, 267-281 (2000).

V. M. Murukeshan, P. Y. Chan, L. S. Ong, L. K. Seah, "Cure monitoring of smart composites using Fiber Bragg Grating based embedded sensors," Sens. Actuat. A—Phys. 79, 153-161 (2000).

E. Bocherens, "Damage detection in a radome sandwich material with embedded fiber optic sensors," Smart Mater. Struct. 9, 310-315 (2000).

C. Bariain, I. R. Matias, F. J. Arregui, M. Lopez-Amo, "Optical fiber humidity sensor based on a tapered fiber coated with agarose gel," Sens. Actuat. B—Chem. 69, 127-131 (2000).

J. Lin, "Recent development and applications of optical and fiber-optic pH sensors," Trac-Trends Anal. Chem. 19, 541-552 (2000).

F. J. Arregui, K. L. Cooper, Y. J. Liu, I. R. Matias, R. O. Claus, "Optical fiber humidity sensor with a fast response time using the ionic self-assembly method," IEICE Trans. Electron. E83C, 360-365 (2000).

1999 (3)

K. Hotate, "Coherent photonic sensing," Sens. Update 6, 131-162 (1999).

F. J. Arregui, Y. J. Liu, I. R. Matias, R. O. Claus, "Optical fiber humidity sensor using a nano Fabry–Perot cavity formed by the ionic self-assembly method," Sens. Actuat. B—Chem. 59, 54-59 (1999).

E. J. Friebele, "Optical fiber sensors for spacecraft applications," Smart Mater. Struct. 8, 813-838 (1999).

1998 (4)

K. Kageyama, "Smart marine structures: An approach to the monitoring of ship structures with fiber-optic sensors," Smart Mater. Struct. 7, 472-478 (1998).

A. MacLean, "Hydrogel/fibre optic sensor for distributed measurement of humidity and pH value," Smart Struct. Mater. 1998: Sens. Phenomena Meas. Instrum. Smart Struct. Mater. 3330, 134-144 (1998).

C. Doyle, "In situ process and condition monitoring of advanced fibre-reinforced composite materials using optical fibre sensors," Smart Mater. Struct. 7, 145-158 (1998).

P. L. Fuhr, D. R. Huston, "Corrosion detection in reinforced concrete roadways and bridges via embedded fiber optic sensors," Smart Mater. Struct. 7, 217-228 (1998).

1997 (5)

W. C. Michie, B. Culshaw, A. McLean, M. Konstantaki, S. Hadjiloucas, "Distributed water ingress and water potential measurements using fibre optics," Cement Concrete Composites 19, 35-44 (1997).

A. A. Panova, P. Pantano, D. R. Walt, "In situ fluorescence imaging of localized corrosion with a pH-sensitive imaging fiber," Anal. Chem. 69, 1635-1641 (1997).

M. Nikles, L. Thevenaz, P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).

J. M. Lopez-Higuera, M. A. Morante, A. Cobo, "Simple low-frequency optical fiber accelerometer with large rotating machine monitoring applications," J. Lightw. Technol. 15, 1120-1130 (1997).

D. R. Hjelme, L. Bjerkan, S. Neegard, J. S. Rambech, J. V. Aarsnes, "Application of Bragg grating sensors in the characterization of scaled marine vehicle models," Appl. Opt. 36, 328-336 (1997).

1994 (1)

R. H. West, H. Buker, E. J. Friebele, H. Henschel, P. B. Lyons, "The use of optical-time domain reflectometers to measure radiation-induced losses in optical fibers," J. Lightwave Technol. 12, 614-620 (1994).

1993 (3)

T. Horiguchi, T. Kurashima, Y. Koyamada, "Measurement of temperature and strain distribution by Brillouin frequency-shift in silica optical fibers," Distrib. Multiplexed Fiber Opt. Sens. II 1797, 2-13 (1993).

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, "Brillouin optical-fiber time-domain reflectometry," IEICE Trans. Commun. E76B, 382-390 (1993).

R. C. Jorgenson, S. S. Yee, "A fiberoptic chemical sensor-based on surface-plasmon resonance," Sens. Actuat. B—Chem. 12, 213-220 (1993).

1990 (1)

1989 (2)

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, "Potential of stimulated Brillouin-scattering as sensing mechanism for distributed temperature sensors," Electron. Lett. 25, 913-915 (1989).

F. P. Kapron, B. P. Adams, E. A. Thomas, J. W. Peters, "Fiber-optic reflection measurements using OCWR and OTDR techniques," J. Lightwave Technol. 7, 1234-1241 (1989).

1985 (2)

S. A. Kingsley, D. E. N. Davies, "OFDR diagnostics for fiber and integrated-optic systems," Electron. Lett. 21, 434-435 (1985).

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, "Distributed optical fiber Raman temperature sensor using a semiconductor light-source and detector," Electron. Lett. 21, 569-570 (1985).

Anal. Chem. (1)

A. A. Panova, P. Pantano, D. R. Walt, "In situ fluorescence imaging of localized corrosion with a pH-sensitive imaging fiber," Anal. Chem. 69, 1635-1641 (1997).

Appl. Composite Mater. (1)

H. Sekine, S. E. Fujimoto, T. Okabe, N. Takeda, T. Yokobori, "Structural health monitoring of cracked aircraft panels repaired with bonded patches using fiber Bragg grating sensors," Appl. Composite Mater. 13, 87-98 (2006).

Appl. Opt. (3)

Cement Concrete Composites (1)

W. C. Michie, B. Culshaw, A. McLean, M. Konstantaki, S. Hadjiloucas, "Distributed water ingress and water potential measurements using fibre optics," Cement Concrete Composites 19, 35-44 (1997).

Cold Regions Sci. Technol. (1)

M. C. Homola, P. J. Nicklasson, P. A. Sundsbo, "Ice sensors for wind turbines," Cold Regions Sci. Technol. 46, 125-131 (2006).

Composite Struct. (2)

H. C. H. Li, I. Herszberg, A. P. Mouritz, C. E. Davis, S. C. Galea, "Sensitivity of embedded fibre optic Bragg grating sensors to disbonds in bonded composite ship joints," Composite Struct. 66, 239-248 (2004).

S. Takeda, Y. Aoki, T. Ishikawa, N. Takeda, H. Kikukawa, "Structural health monitoring of composite wing structure during durability test," Composite Struct. 79, 133-139 (2007).

Distrib. Multiplexed Fiber Opt. Sens. II (1)

T. Horiguchi, T. Kurashima, Y. Koyamada, "Measurement of temperature and strain distribution by Brillouin frequency-shift in silica optical fibers," Distrib. Multiplexed Fiber Opt. Sens. II 1797, 2-13 (1993).

Electron. Lett. (3)

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, "Potential of stimulated Brillouin-scattering as sensing mechanism for distributed temperature sensors," Electron. Lett. 25, 913-915 (1989).

S. A. Kingsley, D. E. N. Davies, "OFDR diagnostics for fiber and integrated-optic systems," Electron. Lett. 21, 434-435 (1985).

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, "Distributed optical fiber Raman temperature sensor using a semiconductor light-source and detector," Electron. Lett. 21, 569-570 (1985).

Eng. Struct. (1)

G. Kister, "Methodology and integrity monitoring of foundation concrete piles using Bragg grating optical fibre sensors," Eng. Struct. 29, 2048-2055 (2007).

IEEE Photon. Technol. Lett. (1)

C. Galindez, F. J. Madruga, J. M. Lopez-Higuera, "Influence of humidity on the measurement of brillouin frequency shift," IEEE Photon. Technol. Lett. 20, 1959-1961 (2008).

IEEE Sens. J. (1)

A. Cusano, "Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors," IEEE Sens. J. 6, 67-77 (2006).

IEICE Trans. Commun. (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, "Brillouin optical-fiber time-domain reflectometry," IEICE Trans. Commun. E76B, 382-390 (1993).

IEICE Trans. Electron. (2)

F. J. Arregui, K. L. Cooper, Y. J. Liu, I. R. Matias, R. O. Claus, "Optical fiber humidity sensor with a fast response time using the ionic self-assembly method," IEICE Trans. Electron. E83C, 360-365 (2000).

S. Vohra, G. Johnson, M. Todd, B. Danver, B. Althouse, "Distributed strain monitoring with arrays of fiber Bragg grating sensors on an in-construction steel box-girder bridge," IEICE Trans. Electron. E83C, 454-461 (2000).

J. Construct. Steel Res. (1)

T. A. Hampshire, H. Adeli, "Monitoring the behavior of steel structures using distributed optical fiber sensors," J. Construct. Steel Res. 53, 267-281 (2000).

J. Lightw. Technol. (1)

J. M. Lopez-Higuera, M. A. Morante, A. Cobo, "Simple low-frequency optical fiber accelerometer with large rotating machine monitoring applications," J. Lightw. Technol. 15, 1120-1130 (1997).

J. Lightwave Technol. (5)

K. Bohnert, P. Gabus, J. Nehring, H. Brandle, "Temperature and vibration insensitive fiber-optic current sensor," J. Lightwave Technol. 20, 267-276 (2002).

M. Nikles, L. Thevenaz, P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).

F. P. Kapron, B. P. Adams, E. A. Thomas, J. W. Peters, "Fiber-optic reflection measurements using OCWR and OTDR techniques," J. Lightwave Technol. 7, 1234-1241 (1989).

F. Rodriguez-Barrios, "Distributed Brillouin fiber sensor assisted by first-order Raman amplification," J. Lightwave Technol. 28, 2162-2172 (2010).

R. H. West, H. Buker, E. J. Friebele, H. Henschel, P. B. Lyons, "The use of optical-time domain reflectometers to measure radiation-induced losses in optical fibers," J. Lightwave Technol. 12, 614-620 (1994).

J. Opt. Soc. Amer. B—Opt. Phys. (1)

M. N. Alahbabi, Y. T. Cho, T. P. Newson, "150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification," J. Opt. Soc. Amer. B—Opt. Phys. 22, 1321-1324 (2005).

J. Perform. Const. Facilities (1)

F. Matta, F. Bastianini, N. Galati, P. Casadei, A. Nanni, "Distributed strain measurement in steel bridge with fiber optic sensors: Validation through diagnostic load test," J. Perform. Const. Facilities 22, 264-273 (2008).

Meas. Sci. Technol. (6)

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, R. Graue, "Fibre optic sensor network for spacecraft health monitoring," Meas. Sci. Technol. 12, 974-980 (2001).

L. Kruger, P. L. Swart, A. A. Chtcherbakov, A. J. van Wyk, "Non-contact torsion sensor using fibre Bragg gratings," Meas. Sci. Technol. 15, 1448-1452 (2004).

C. Barbosa, "Weldable fibre Bragg grating sensors for steel bridge monitoring," Meas. Sci. Technol. 19, 125305-1-125305-10 (2008).

S. H. Aref, M. I. Zibaii, H. Latifi, "An improved fiber optic pressure and temperature sensor for downhole application," Meas. Sci. Technol. 20, 1-6 (2009).

C. C. Ciang, J. R. Lee, H. J. Bang, "Structural health monitoring for a wind turbine system: A review of damage detection methods," Meas. Sci. Technol. 19, 122001-1-122001-20 (2008).

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, G. Lenschow, "A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade," Meas. Sci. Technol. 17, 1167-1172 (2006).

Mitsubishi Heavy Ind. Tech. Rev. (1)

T. Yari, "Monitoring aircraft structural health using optical fiber sensors," Mitsubishi Heavy Ind. Tech. Rev. 45, 5-8 (2008).

Opt. Commun. (1)

S. H. Aref, H. Latifi, M. I. Zibaii, M. Afshari, "Fiber optic Fabry–Perot pressure sensor with low sensitivity to temperature changes for downhole application," Opt. Commun. 269, 322-330 (2007).

Opt. Eng. (2)

J. M. Lopez-Higuera, C. J. Misas, A. Q. Incera, J. E. Cuenca, "Fiber optic civil structure monitoring system," Opt. Eng. 44, 044401-1-044401-10 (2005).

X. Y. Bao, C. Huang, X. D. Zeng, A. Arcand, P. Sullivan, "Simultaneous strain and temperature monitoring of the composite cure with a Brillouin-scattering-based distributed sensor," Opt. Eng. 41, 1496-1501 (2002).

Opt. Exp. (1)

Y. Mizuno, Z. Y. He, K. Hotate, "Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme," Opt. Exp. 17, 9040-9046 (2009).

Opt. Fiber Technol. (1)

L. H. Liu, H. Zhang, Q. D. Zhao, Y. H. Liu, F. Li, "Temperature-independent FBG pressure sensor with high sensitivity," Opt. Fiber Technol. 13, 78-80 (2007).

Opt. Fibers: Applicat. (1)

R. Willsch, W. Ecke, G. Schwotzer, "Spectrally encoded optical fibre sensor systems and their application in process control, environmental and structural monitoring (Invited paper)," Opt. Fibers: Applicat. 5952, 59520I-1-59520I-14 (2005).

Opt. Lett. (3)

Optik (1)

A. B. Ganesh, T. K. Radhakrishnan, "Fiber-optic sensor for the estimation of microbial corrosion of metals," Optik 120, 479-483 (2009).

Philos. Trans. R. Soc. A—Math. Phys. Eng. Sci. (1)

C. R. Farrar, K. Worden, "An introduction to structural health monitoring," Philos. Trans. R. Soc. A—Math. Phys. Eng. Sci. 365, 303-315 (2007).

Photon. Transp. Ind.: Auto Aerosp. (1)

C. Baldwin, J. Kiddy, P. Samuel, J. Coker, D. Pines, "Fiber optic sensors monitoring transmission ring gears," Photon. Transp. Ind.: Auto Aerosp. 6758, 675808.1-675808.9 (2007).

Sens. Actuat. A—Phys. (5)

S. C. Huang, W. W. Lin, M. T. Tsai, M. H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sens. Actuat. A—Phys. 135, 570-579 (2007).

P. M. Nellen, "Reliability of fiber Bragg grating based sensors for downhole applications," Sens. Actuat. A—Phys. 103, 364-376 (2003).

V. M. Murukeshan, P. Y. Chan, L. S. Ong, L. K. Seah, "Cure monitoring of smart composites using Fiber Bragg Grating based embedded sensors," Sens. Actuat. A—Phys. 79, 153-161 (2000).

T. L. Yeo, T. Sun, K. T. V. Grattan, "Fibre-optic sensor technologies for humidity and moisture measurement," Sens. Actuat. A—Phys. 144, 280-295 (2008).

S. Bey, C. C. C. Lam, T. Sun, K. T. V. Grattan, "Chloride ion optical sensing using a long period grating pair," Sens. Actuat. A—Phys. 141, 390-395 (2008).

Sens. Actuat. B—Chem. (5)

M. Benounis, N. Jaffrezic-Renault, "Elaboration of an optical fibre corrosion sensor for aircraft applications," Sens. Actuat. B—Chem. 100, 1-8 (2004).

A. M. Cardenas-Valencia, "Development of stripped-cladding optical fiber sensors for continuous monitoring—Part II: Referencing method for spectral sensing of environmental corrosion," Sens. Actuat. B—Chem. 122, 410-418 (2007).

R. C. Jorgenson, S. S. Yee, "A fiberoptic chemical sensor-based on surface-plasmon resonance," Sens. Actuat. B—Chem. 12, 213-220 (1993).

C. Bariain, I. R. Matias, F. J. Arregui, M. Lopez-Amo, "Optical fiber humidity sensor based on a tapered fiber coated with agarose gel," Sens. Actuat. B—Chem. 69, 127-131 (2000).

F. J. Arregui, Y. J. Liu, I. R. Matias, R. O. Claus, "Optical fiber humidity sensor using a nano Fabry–Perot cavity formed by the ionic self-assembly method," Sens. Actuat. B—Chem. 59, 54-59 (1999).

Sens. Mater. (1)

T. H. Ha, "Role of sensors in corrosion monitoring and durability assessment in concrete structures: the state of the art," Sens. Mater. 16, 133-158 (2004).

Sens. Update (1)

K. Hotate, "Coherent photonic sensing," Sens. Update 6, 131-162 (1999).

Smart Mater. Struct. (13)

F. Laferriere, D. Inaudi, P. Kronenberg, I. F. C. Smith, "A new system for early chloride detection in concrete," Smart Mater. Struct. 17, (2008).

T. L. Yeo, "Demonstration of a fibre-optic sensing technique for the measurement of moisture absorption in concrete," Smart Mater. Struct. 15, N40-N45 (2006).

P. L. Fuhr, D. R. Huston, "Corrosion detection in reinforced concrete roadways and bridges via embedded fiber optic sensors," Smart Mater. Struct. 7, 217-228 (1998).

C. Doyle, "In situ process and condition monitoring of advanced fibre-reinforced composite materials using optical fibre sensors," Smart Mater. Struct. 7, 145-158 (1998).

H. Tsutsui, A. Kawamata, T. Sanda, N. Takeda, "Detection of impact damage of stiffened composite panels using embedded small-diameter optical fibers," Smart Mater. Struct. 13, 1284-1290 (2004).

E. Bocherens, "Damage detection in a radome sandwich material with embedded fiber optic sensors," Smart Mater. Struct. 9, 310-315 (2000).

G. Wang, "Ship hull structure monitoring using fibre optic sensors," Smart Mater. Struct. 10, 472-478 (2001).

K. Kageyama, "Smart marine structures: An approach to the monitoring of ship structures with fiber-optic sensors," Smart Mater. Struct. 7, 472-478 (1998).

J. R. Lee, "In-flight health monitoring of a subscale wing using a fiber Bragg grating sensor system," Smart Mater. Struct. 12, 147-155 (2003).

I. J. Read, P. D. Foote, "Sea and flight trials of optical fibre Bragg grating strain sensing systems," Smart Mater. Struct. 10, 1085-1094 (2001).

R. C. Tennyson, A. A. Mufti, S. Rizkalla, G. Tadros, B. Benmokrane, "Structural health monitoring of innovative bridges in Canada with fiber optic sensors," Smart Mater. Struct. 10, 560-573 (2001).

E. J. Friebele, "Optical fiber sensors for spacecraft applications," Smart Mater. Struct. 8, 813-838 (1999).

Y. Okabe, S. Yashiro, T. Kosaka, N. Takeda, "Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors," Smart Mater. Struct. 9, 832-838 (2000).

Smart Struct. Mater. 1998: Sens. Phenomena Meas. Instrum. Smart Struct. Mater. (1)

A. MacLean, "Hydrogel/fibre optic sensor for distributed measurement of humidity and pH value," Smart Struct. Mater. 1998: Sens. Phenomena Meas. Instrum. Smart Struct. Mater. 3330, 134-144 (1998).

Talanta (1)

Y. C. Kim, J. F. Masson, K. S. Booksh, "Single-crystal sapphire-fiber optic sensors based on surface plasmon resonance spectroscopy for in situ monitoring," Talanta 67, 908-917 (2005).

Trac-Trends Anal. Chem. (1)

J. Lin, "Recent development and applications of optical and fiber-optic pH sensors," Trac-Trends Anal. Chem. 19, 541-552 (2000).

Other (62)

W. Grahn, P. Makedonski, J. Wichern, W. Kowalsky, S. Wiese, "Fiberoptical sensors for in situ monitoring of moisture and pH-value in reinforced concrete," Imag. Spectrometry VII (2001) pp. 395-403.

R. Javaherdashti, Microbiologically Influenced Corrosion: An Engineering Insight (Springer-Verlag, 2008).

B. Glišic, D. Inaudi, Fibre Optic Methods for Structural Health Monitoring (Wiley-Interscience, 2007).

J. Yi, K. Lee, J. Park, W. Park, "Structural health monitoring system for “Uldolmok” tidal current power pilot plant and its applications," 28th Int. Conf. Ocean, Offshore Arctic Eng. (2009) pp. 1139-1144.

F. Ansari, Sensing Issues in Civil Structural Health Monitoring (Kluwer, 2005).

M. Shenoy, H. Huang, "An optical fiber-based corrosion sensor based on laser light reflection," Sens. Smart Struct. Technol. Civil, Mech., Aerosp. Syst. (2010) pp. 76473O-1-76473O-9.

C. Yang, Z. Wu, Y. Zhang, "Structural health monitoring of PC structures with novel types of distributed sensors," Nondestruct. Characterization Composite Mater., Aerosp. Eng., Civil Infrastruct., Homeland Security (2010) pp. 76490A-1-76490A-11.

S. Kramer, F. Leon, B. Appert, "Fiber optic sensor network for lightning impact localization and classification in wind turbines," IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst. (2006) pp. 173-178.

J. Wernicke, S. Kuhnt, R. Byars, "Structural monitoring system for offshore wind turbine foundations structures," Eur. Wind Energy Conf. Exhib. AthensGR (2006).

K. Hotate, "Correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering," 17th Int. Conf. Opt. Fibre Sens. (OFS) (2005) pp. 62-67.

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, M. S. Wolfe, "High resolution distributed strain or temperature measurements in single-and multi-mode fiber using swpt-wavelength interferometry," 18th Int. Conf. Opt. Fibre Sens. (OFS) (2006).

X. Y. Bao, "32 km Brillouin loss based distributed temperature sensor," 9th Opt. Fiber Sens. Conf. (1993).

J. M. Lopez-Higuera, Photonics Sensing Technologies: Successful Techniques and Trends (CSIC, 2007) pp. 33-48.

E. Cibula, D. Donlagic, "All-fiber Fabry–Perot strain sensor," 2nd Eur. Workshop Opt. Fibre Sens. (2004) pp. 180-183.

D. Hofmann, F. Basedau, W. R. Habel, R. Gloetzl, "Lightning-safe diaphragm pressure gauge for geotechnical applications using a long-term reliable absolute EFPI sensor," 2nd Eur. Workshop Opt. Fibre Sens. (2004) pp. 128-131.

R. Claus, "Self-assembled nanostructured optical fiber sensors," 17th Int. Conf. Opt. Fibre Sens., Parts 1 and 2 (2005) pp. 138-141.

T. Horiguchi, A. J. Rogers, W. C. Michie, G. Stewart, B. Culshaw, Optical Fiber Sensors—Applications, Analysis and Future Trends (Artech, 1997).

V. Lyöri, Structural Monitoring With Fibre-Optic Sensors Using the Pulsed Time-of-Flight Method and Other Measurement Techniques Ph.D. dissertation Dept. of Electr. and Inform. Eng., Faculty of Technol. Univ. of OuluOuluFinland (2007).

A. Cobo, J. Echevarria, Handbook of Optical Fibre Sensing Technology (Wiley, 2002) pp. 209-226.

W. V. Sorin, "Low coherence reflectometry for high accuaracy sensing," 9th Int. Conf. Opt. Fibre Sens. (OFS) (1993) pp. 243-246.

A. J. Rogers, Handbook of Optical Fibre Sensing Technology (Wiley, 2002) pp. 271-308.

B. Glisic, D. Inaudi, N. Casanova, "SHM process as perceived through 350 projects," Smart Struct. Mater./NDE Symp. (2010) pp. 76480P.

ISIS CanadaGuidelines for Structural Health Monitoring Canada (2001).

USDOT, FHWA, and FTA2006 Status of the Nation's Highways, Bridges and Transit: Conditions and Perfomance (2007).

C. Boller, "Structural health monitoring in aeroespace," Advance Course on SHM BarceloneSpain (2009).

J. M. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, 2002) pp. 1-21.

J. M. López-Higuera, B. Culshaw, Engineering a High-Tech Business: Entrepreneurial Experiences and Insights (SPIE, 2008).

D. Inaudi, Handbook of Optical Fibre Sensing Technology (Wiley, 2002) pp. 517-542.

S. Casciati, M. Domaneschi, D. Inaudi, "Damage assessment from SOFO dynamic measurements," 17th Int. Conf. Opt. Fibre Sens., Parts 1 and 2 (2005) pp. 1048-1051, 1088.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

R. Kashyap, J. M. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, 2002).

Y.-J. Rao, "Long-period fiber gratings for low-cost sensing (invited paper)," 17th Int. Conf. Opt. Fibre Sens. (OFS) (2005) pp. 13-16.

J. M. López-Higuera, Optical Sensors (Universidad de Cantabria, 1998).

M. Lopez-Amo, J. M. Lopez-Higuera, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science Publishers Ltd., 2010).

E. Wolfgang, "Applications of FBG sensors. Invited tutorial," 19th Int. Conf. Opt. Fibre Sens. (OFS) PerthAustralia (2008).

G. P. Agraval, Nonlinear Fiber Optics. Quantum Electronics-Pronciples and Applications (Academic, 1995).

S. Briancourt, T. Seymour, "Aircraft landing gear for load measurement in event of hard landing or off-runway excursion, has fiber optic load sensor which monitors load in a component of landing gear such as axle," US2009026313-A1, to Airbus Uk Ltd (Eads) (2009).

M. Austin, "Sensor application opportunities for aerospace propulsion systems," Avion., Fiber-Opt. Phototon. Photon. Technol. Conf. (2009) pp. 21-22.

H. Iwaki, H. Yarnakawa, A. Mita, "Health monitoring system using FBG-based sensors for a 12-story building with column dampers," Smart Struct. Mater.: Smart Syst. Bridges, Struct., Highways (2001) pp. 471-478.

G. Rossi, E. Speranzini, "Fiber Bragg grating strain sensors for in situ analysis and monitoring of fiber-reinforced historical civil structures," 8th Int. Conf. Vibrat. Meas. Laser Tech.: Adv. Appl. (2008).

M. Whelan, D. Albrecht, A. Capsoni, "Remote structural monitoring of the cathedral of Como using an optical fiber Bragg sensor system," Smart Struct. Mater.: Smart Sens. Technol. Meas. Syst. (2002) pp. 242-252.

L. M. Ortega, Monitoring of the Semi-Floating Dock of “La Condamine” Harbour—Monaco (SAMCO Newsletter, 2003) pp. 2.

O. V. Butov, "Versatile in-fiber Bragg grating pressure sensor for oil and gas industry," 18th Int. Conf. Opt. Fibre Sens. (OFS) (2006).

D. Inaudi, "Monitoring of a concrete arch bridge during construction," Smart Struct. Mater.: Smart Syst. Bridges, Struct., Highways (2002) pp. 146-153.

S. Vurpillot, N. Casanova, D. Inaudi, P. Kronenberg, "Bridge spatial displacement monitoring with 100 fiber optic deformation sensors: Sensors network and preliminary results," SPIE Conf. Smart Struct. Mater. (1997) pp. 51.

D. Inaudi, "Structural health monitoring system for the new I-35W St Anthony Falls Bridge," 4th Int. Conf. Struct. Health Monitor. Intell. Infrastruct. (SHMII-4) (2009) pp. 10.

I. McKenzie, N. Karafolas, "Fiber optic sensing in space structures: The experience of the European Space Agency," 17th Int. Conf. Opt. Fibre Sens., Parts 1 and 2 (2005) pp. 262-269.

C. Baldwin, J. Kiddy, T. Salter, P. Chen, J. Niemczuk, "Fiber optic structural health monitoring system: Rough sea trials of the RV Triton," Oceans 2002 MTS/IEEE Conf. Exhib. pp. 1806-1813.

H. Y. Tam, "Utilization of fiber optic Bragg Grating sensing systems for health monitoring in railway applications," Struct. Health Monit.: Quantification, Validat., Implement. (2007) pp. 1824-1831.

C. Wang, H. Wang, M. Chen, "Structural health monitoring activities of applying optical fiber sensors in Taiwan," 18th Int. Conf. Opt. Fibre Sens. (OFS) (2006).

J. P. Ou, H. Li, D. Zhongdong, Structural Health Monitoring and Intelligent Infraestructure (Taylor and Francis, 2006).

X. G. Qiao, M. Fiddy, "Distributed optical fiber Bragg grating sensor for simultaneous measurement of pressure and temperature in the oil and gas downhole," Active Passive Opt. Compon. WDM Commun. II (2002) pp. 554-558.

T. S. Li, "High pressure and temperature sensing for the downhole," Sens. Harsh Environ. III (2007) pp. 75706-75706.

Z. Y. Zhong, X. L. Zhi, W. J. Yi, "Oil well real-time monitoring with downhole permanent FBG sensor network," IEEE Int. Conf. Control Autom. (2007) pp. 701-704.

J. M. López-Higuera, "Fibre optic sensors in structural health monitoring (invited paper)," OFC/NFOEC 2010 San DiegoCA (2010).

Global Optoelectronics Industry Market Report and Forecast Optoelectronics Industry Development Association (OIDA) (2009).

Z. Bai, "Conduit damage and leakage position locating instrument for oil gas pipeline in oil industry, has locating part connected with microcomputer, and distributed optical fiber sensor connected with photoelectric emitter and receiver," CN2901274-Y, to China Rock Oil Natural Gas Group Company (2010).

T. Bosselmann, "Method for measuring temperature and/or pressure in underwater pipeline in offshore region of oil- and gas conveying systems, involves utilizing light conductor as sensor and guiding light conductor parallel to pipeline," DE102008056087-A1; WO2010052126-A1, to Siemens Ag (2010).

R. Hampson, A. Hartog, G. P. Lees, A. P. Strong, K. Williams, "Optical fiber sensor system for condition monitoring of e.g., pipeline, has reflectometers of interrogation and laser pumping sub-systems, that are connected to left end of upper sensing fiber and right end of lower sensing fiber," WO2010034988-A1, to Schlumberger Holdings Ltd.; Schlumberger Canada Ltd. (2010).

D. J. Hill, M. McEwen-King, "Method for tracking movement pig in pipeline e.g., oil and gas pipeline, involves processing return from each of several discrete longitudinal sensing portions to detect acoustic signature associated with movement of pig in the pipeline," WO2010020781-A1, to Qinetiq Ltd. (2010).

H. Yang, "Multi-sensor system for continuously monitoring and controlling oil field intelligent well/pipeline, has node processor connected with central processor through channel that is processed using wireless communication, optical fiber or cable," CN101706650-A, to Yang H (2010).

W. J. Zhang, Q. Wang, "Natural gas pipeline leakage detection based on optic fiber interferometer sensor in laboratory-scale experiment," 8th Int. Symp. Distrib. Comput. Appl. Bus., Eng. Sci. (DCABES) (2009) pp. 201-203.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.