Abstract

We report here on the design, fabrication, and high-speed performance of a compact 48-channel optical transceiver module enabled by a key novel component: a “holey” Optochip. A single CMOS transceiver chip with 24 receiver (RX) and 24 laser diode driver circuits, measuring 5.2 mm$\,\times\,$5.8 mm, becomes a holey Optochip with the fabrication of forty-eight through-substrate optical vias (holes): one for each transmitter (TX) and RX channel. Twenty-four channel, 850-nm VCSEL and photodiode arrays are directly flip-chip soldered to the Optochip with their active devices centered on the optical vias such that optical I/O is accessed through the substrate of the CMOS IC. The holey Optochip approach offers numerous advantages: 1) full compatibility with top emitting/detecting 850-nm VCSELs/PDs that are currently produced in high volumes; 2) close integration of the VCSEL/PD devices with their drive electronics for optimized high-speed performance; 3) a small-footprint, chip-scale package that minimizes CMOS die cost while maximizing transceiver packing density; 4) direct coupling to standard 4$\,\times\,$12 multimode fiber arrays through a 2-lens optical system; and 5) straightforward scaling to larger 2-D arrays of TX and RX channels.Complete transceiver modules, or holey Optomodules, have been produced by flip-chip soldering assembled Optochips to high-density, high-speed organic carriers. A pluggable connector soldered to the bottom of the Optomodule provides all module electrical I/O. The Optomodule footprint, dictated by the 1-mm connector pitch, is 21 mm$\,\times\,$21 mm. Fully functional holey Optomodules with 24 TX and 24 RX channels operate up to 12.5 Gb/s/ch achieving efficiencies (including both TX and RX) of 8.2 pJ/bit. The aggregate 300-Gb/s bi-directional data rate is the highest ever reported for single-chip transceiver modules.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. D. Grice, H. Brandt, C. Wright, P. McCarthy, A. Emerich, T. Schimke, C. Archer, J. Carey, P. Sanders, J. A. Fritzjunker, S. Lewis, P. Germann, "Breaking the petaflops barrier," IBM J. Res. Dev. 53, (2009) paper 1.
  2. A. F. Benner, "Optics for high-performance servers and supercomputers," Proc. Opt. Fiber Commun. Conf. (2010).
  3. C. L. Schow, F. E. Doany, C. Baks, Y. H. Kwark, D. M. Kuchta, J. A. Kash, "A single-chip CMOS-based parallel optical transceiver capable of 240 Gb/s bi-directional data rates," J. Lightw. Technol. 27, 915-929 (2009).
  4. D. M. Kuchta, VCSELs—Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers .
  5. A. Suzuki, T. Ishikawa, Y. Wakazono, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, T. Mikawa, "Vertically pluggable and compact 10-Gb/s$\,\times\,$12-channel optical modules with anisotropic conductive film for over 100-Gb/s optical interconnect systems," J. Lightw. Technol. 27, 3249-3258 (2009).
  6. M. H. Fields, J. Foley, R. Kaneshiro, L. McColloch, D. Meadowcroft, F. W. Miller, S. Nassar, M. Robinson, H. Xu, "Transceivers and optical engines for computer and datacenter interconnects," Proc. Opt. Fiber Commun. Conf. (2010).
  7. H. Nasu, "1060-nm VCSEL-based parallel-optical modules for short link applications," Proc. Opt. Fiber Commun. Conf. (2010).
  8. K. Yashiki, "240-Gb/s on-board optical transmitters and receivers," Proc. Opt. Fiber Commun. Conf. (2010).
  9. T. Takemoto, "A 25-Gb/s, 2.8-mW/Gb/s low power CMOS optical receiver for 100-Gb/s ethernet solution," Proc. 35th ECOC (Austria) (2009).
  10. F. E. Doany, C. L. Schow, C. Baks, R. Budd, Y.-J. Chang, P. Pepeljugoski, L. Schares, D. Kuchta, R. John, J. A. Kash, F. Libsch, "160-Gb/s bidirectional parallel optical transceiver module for board level interconnects using a single-chip CMOS IC," Proc. 57th ECTC (2007) pp. 1256-1261.
  11. F. E. Doany, C. L. Schow, R. Budd, C. Baks, D. M. Kuchta, P. Pepeljugoski, F. Libsch, J. A. Kash, R. Dangel, F. Horst, B. J. Offrein, "Chip-to-chip board-level optical data buses," Proc. Opt. Fiber Commun. Conf. (2008).
  12. F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, J. A. Kash, "160 Gb/s bidirectional polymer waveguide board-level optical interconnects using CMOS-based transceivers," IEEE Trans. Adv. Packag. 32, 345-359 (2009).
  13. C. L. Schow, F. E. Doany, C. Chen, A. V. Rylyakov, C. W. Baks, D. M. Kuchta, R. A. John, J. A. Kash, "Low-power 16$\,\times\,$10 Gb/s bi-directional single chip CMOS optical transceivers operating at ${<} 5$ mW/Gb/s/link," IEEE J. Solid-State Circuits 44, 301-313 (2009).
  14. F. E. Doany, B. G. Lee, C. L. Schow, C. K. Tsang, C. Baks, Y. Kwark, J. U. Knickerbocker, J. A. Kash, "Terabit/s-class 24-channel bidirectional optical transceiver module based on TSV Si carrier for board-level interconnects," Proc. 60th Elect. Comp. Tech. Conf. (2010).
  15. R. Dangel, U. Bapst, C. Berger, R. Beyeler, L. Dellmann, F. Horst, B. Offrein, G.-L. Bona, "Development of a low-cost low-loss polymer waveguide technology for parallel optical interconnect applications," Tech. Dig. IEEE/LEOS Summer Topical Meetings (2004).
  16. R. Dangel, "Polymer-waveguide-based board-level optical interconnect technology for datacom applications," IEEE Trans. Adv. Packag. 31, 759-767 (2008).
  17. A. V. Rylyakov, C. L. Schow, F. E. Doany, B. G. Lee, C. Jahnes, Y. Kwark, C. Baks, D. M. Kuchta, J. A. Kash, "A 24-channel 300 Gb/s 8.2 pJ/bit full-duplex fiber-coupled optical transceiver module based on a single “holey” CMOS IC," Proc. Opt. Fiber Commun. Conf. (2010).
  18. L. F. Miller, "Controlled collapse reflow chip joining," IBM J. Res. Dev. 13, 239-250 (1969).
  19. B. G. Lee, C. L. Schow, A. V. Rylyakov, F. E. Doany, R. A. John, J. A. Kash, "Low-power CMOS-driven transmitters and receivers," Prof. CLEO (2010).
  20. D. Kucharski, Y. H. Kwark, D. M. Kuchta, K. T. Kornegay, M. R. T. Tan, C.-K. Lynn, A. Tandon, "A 20 Gb/s VCSEL driver with pre-emphasis and regulated output impedance in 0.13 $\mu$m CMOS," Proc. IEEE Int. Solid-State Circuits Conf. (2005).
  21. E. Cherry, D. Hooper, "The design of wideband transistor feedback amplifiers," Proc. Inst. Elect. Eng. 110, 375-389 (1963).
  22. N. Y. Li, C. Xie;, C. Lei, W. Luo, X. Sun, D. Kuchta, C. Schow, F. Doany, "Development of high-speed VCSELs beyond 10 Gb/s at emcore," Proc. SPIE Photon. West (2010).
  23. N. Y. Li, C. L. Schow, D. M. Kuchta, F. E. Doany, B. G. Lee, W. Luo, C. Xie, X. Sun, K. P. Jackson, C. Lei, "High-performance 850 nm VCSEL and photodetector arrays for 25 Gb/s parallel optical interconnects," Proc. Opt. Fiber Commun. Conf. (2010).
  24. F. E. Doany, C. L. Schow, A. V. Rylyakov, B. G. Lee, C. Jahnes, Y. Kwark, C. Baks, D. M. Kuchta, J. A. Kash, "Dense 24 TX ${+} 24$ RX fiber-coupled optical module based on a holey CMOS transceiver IC," Proc. 60th Elect. Comp. Tech. Conf. (ECTC) (2010).
  25. P. A. Gruber, L. Belanger, G. P. Brouillette, D. H. Danovitch, J.-L. Landreville, D. T. Naugle, V. A. Oberson, D.-Y. Shih, C. L. Tessler, M. R. Turgeon, "Low-cost wafer bumping," IBM J. Res. Dev. 49, 621-639 (2005).
  26. R. H. Johnson, D. Kuchta, "30 Gb/s directly modulated 850 nm datacom VCSELs," Proc. CLEO/QELS (2008).
  27. M. Iwase, M. Shiino, T. Yagi, M. Tanaka, K. Takakahashi, Y. Nekado, H. Nasu, M. Morimoto, H. Aoyagi, K. Suematsu, H. Miyazaki, M. Shinoda, N. Nishimura, I. Shimotakahara, R. Sugizaki, T. Oyama, T. Ozawa, N. Okada, K. Yujobo, "Optical components for high-density optical inter-connect system: OptoUnity," Furukawa Rev. 26-33 (2007).
  28. F. Doany, C. Schow, B. Lee, A. Rylyakov, C. Jahnes, Y. Kwark, C. Baks, D. Kuchta, J. Kash, "300 Gb/s bidirectional fiber-coupled optical transceiver module based on 24 TX ${+} 24$ RX “holey” CMOS IC,," Proc. SPIE Photon. West (2011).

2009 (5)

D. Grice, H. Brandt, C. Wright, P. McCarthy, A. Emerich, T. Schimke, C. Archer, J. Carey, P. Sanders, J. A. Fritzjunker, S. Lewis, P. Germann, "Breaking the petaflops barrier," IBM J. Res. Dev. 53, (2009) paper 1.

C. L. Schow, F. E. Doany, C. Baks, Y. H. Kwark, D. M. Kuchta, J. A. Kash, "A single-chip CMOS-based parallel optical transceiver capable of 240 Gb/s bi-directional data rates," J. Lightw. Technol. 27, 915-929 (2009).

A. Suzuki, T. Ishikawa, Y. Wakazono, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, T. Mikawa, "Vertically pluggable and compact 10-Gb/s$\,\times\,$12-channel optical modules with anisotropic conductive film for over 100-Gb/s optical interconnect systems," J. Lightw. Technol. 27, 3249-3258 (2009).

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, J. A. Kash, "160 Gb/s bidirectional polymer waveguide board-level optical interconnects using CMOS-based transceivers," IEEE Trans. Adv. Packag. 32, 345-359 (2009).

C. L. Schow, F. E. Doany, C. Chen, A. V. Rylyakov, C. W. Baks, D. M. Kuchta, R. A. John, J. A. Kash, "Low-power 16$\,\times\,$10 Gb/s bi-directional single chip CMOS optical transceivers operating at ${<} 5$ mW/Gb/s/link," IEEE J. Solid-State Circuits 44, 301-313 (2009).

2008 (1)

R. Dangel, "Polymer-waveguide-based board-level optical interconnect technology for datacom applications," IEEE Trans. Adv. Packag. 31, 759-767 (2008).

2007 (1)

M. Iwase, M. Shiino, T. Yagi, M. Tanaka, K. Takakahashi, Y. Nekado, H. Nasu, M. Morimoto, H. Aoyagi, K. Suematsu, H. Miyazaki, M. Shinoda, N. Nishimura, I. Shimotakahara, R. Sugizaki, T. Oyama, T. Ozawa, N. Okada, K. Yujobo, "Optical components for high-density optical inter-connect system: OptoUnity," Furukawa Rev. 26-33 (2007).

2005 (1)

P. A. Gruber, L. Belanger, G. P. Brouillette, D. H. Danovitch, J.-L. Landreville, D. T. Naugle, V. A. Oberson, D.-Y. Shih, C. L. Tessler, M. R. Turgeon, "Low-cost wafer bumping," IBM J. Res. Dev. 49, 621-639 (2005).

1969 (1)

L. F. Miller, "Controlled collapse reflow chip joining," IBM J. Res. Dev. 13, 239-250 (1969).

1963 (1)

E. Cherry, D. Hooper, "The design of wideband transistor feedback amplifiers," Proc. Inst. Elect. Eng. 110, 375-389 (1963).

Furukawa Rev. (1)

M. Iwase, M. Shiino, T. Yagi, M. Tanaka, K. Takakahashi, Y. Nekado, H. Nasu, M. Morimoto, H. Aoyagi, K. Suematsu, H. Miyazaki, M. Shinoda, N. Nishimura, I. Shimotakahara, R. Sugizaki, T. Oyama, T. Ozawa, N. Okada, K. Yujobo, "Optical components for high-density optical inter-connect system: OptoUnity," Furukawa Rev. 26-33 (2007).

IBM J. Res. Dev. (3)

L. F. Miller, "Controlled collapse reflow chip joining," IBM J. Res. Dev. 13, 239-250 (1969).

P. A. Gruber, L. Belanger, G. P. Brouillette, D. H. Danovitch, J.-L. Landreville, D. T. Naugle, V. A. Oberson, D.-Y. Shih, C. L. Tessler, M. R. Turgeon, "Low-cost wafer bumping," IBM J. Res. Dev. 49, 621-639 (2005).

D. Grice, H. Brandt, C. Wright, P. McCarthy, A. Emerich, T. Schimke, C. Archer, J. Carey, P. Sanders, J. A. Fritzjunker, S. Lewis, P. Germann, "Breaking the petaflops barrier," IBM J. Res. Dev. 53, (2009) paper 1.

IEEE J. Solid-State Circuits (1)

C. L. Schow, F. E. Doany, C. Chen, A. V. Rylyakov, C. W. Baks, D. M. Kuchta, R. A. John, J. A. Kash, "Low-power 16$\,\times\,$10 Gb/s bi-directional single chip CMOS optical transceivers operating at ${<} 5$ mW/Gb/s/link," IEEE J. Solid-State Circuits 44, 301-313 (2009).

IEEE Trans. Adv. Packag. (2)

R. Dangel, "Polymer-waveguide-based board-level optical interconnect technology for datacom applications," IEEE Trans. Adv. Packag. 31, 759-767 (2008).

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, J. A. Kash, "160 Gb/s bidirectional polymer waveguide board-level optical interconnects using CMOS-based transceivers," IEEE Trans. Adv. Packag. 32, 345-359 (2009).

J. Lightw. Technol. (2)

C. L. Schow, F. E. Doany, C. Baks, Y. H. Kwark, D. M. Kuchta, J. A. Kash, "A single-chip CMOS-based parallel optical transceiver capable of 240 Gb/s bi-directional data rates," J. Lightw. Technol. 27, 915-929 (2009).

A. Suzuki, T. Ishikawa, Y. Wakazono, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, T. Mikawa, "Vertically pluggable and compact 10-Gb/s$\,\times\,$12-channel optical modules with anisotropic conductive film for over 100-Gb/s optical interconnect systems," J. Lightw. Technol. 27, 3249-3258 (2009).

Proc. Inst. Elect. Eng. (1)

E. Cherry, D. Hooper, "The design of wideband transistor feedback amplifiers," Proc. Inst. Elect. Eng. 110, 375-389 (1963).

Other (18)

N. Y. Li, C. Xie;, C. Lei, W. Luo, X. Sun, D. Kuchta, C. Schow, F. Doany, "Development of high-speed VCSELs beyond 10 Gb/s at emcore," Proc. SPIE Photon. West (2010).

N. Y. Li, C. L. Schow, D. M. Kuchta, F. E. Doany, B. G. Lee, W. Luo, C. Xie, X. Sun, K. P. Jackson, C. Lei, "High-performance 850 nm VCSEL and photodetector arrays for 25 Gb/s parallel optical interconnects," Proc. Opt. Fiber Commun. Conf. (2010).

F. E. Doany, C. L. Schow, A. V. Rylyakov, B. G. Lee, C. Jahnes, Y. Kwark, C. Baks, D. M. Kuchta, J. A. Kash, "Dense 24 TX ${+} 24$ RX fiber-coupled optical module based on a holey CMOS transceiver IC," Proc. 60th Elect. Comp. Tech. Conf. (ECTC) (2010).

A. V. Rylyakov, C. L. Schow, F. E. Doany, B. G. Lee, C. Jahnes, Y. Kwark, C. Baks, D. M. Kuchta, J. A. Kash, "A 24-channel 300 Gb/s 8.2 pJ/bit full-duplex fiber-coupled optical transceiver module based on a single “holey” CMOS IC," Proc. Opt. Fiber Commun. Conf. (2010).

F. E. Doany, B. G. Lee, C. L. Schow, C. K. Tsang, C. Baks, Y. Kwark, J. U. Knickerbocker, J. A. Kash, "Terabit/s-class 24-channel bidirectional optical transceiver module based on TSV Si carrier for board-level interconnects," Proc. 60th Elect. Comp. Tech. Conf. (2010).

R. Dangel, U. Bapst, C. Berger, R. Beyeler, L. Dellmann, F. Horst, B. Offrein, G.-L. Bona, "Development of a low-cost low-loss polymer waveguide technology for parallel optical interconnect applications," Tech. Dig. IEEE/LEOS Summer Topical Meetings (2004).

M. H. Fields, J. Foley, R. Kaneshiro, L. McColloch, D. Meadowcroft, F. W. Miller, S. Nassar, M. Robinson, H. Xu, "Transceivers and optical engines for computer and datacenter interconnects," Proc. Opt. Fiber Commun. Conf. (2010).

H. Nasu, "1060-nm VCSEL-based parallel-optical modules for short link applications," Proc. Opt. Fiber Commun. Conf. (2010).

K. Yashiki, "240-Gb/s on-board optical transmitters and receivers," Proc. Opt. Fiber Commun. Conf. (2010).

T. Takemoto, "A 25-Gb/s, 2.8-mW/Gb/s low power CMOS optical receiver for 100-Gb/s ethernet solution," Proc. 35th ECOC (Austria) (2009).

F. E. Doany, C. L. Schow, C. Baks, R. Budd, Y.-J. Chang, P. Pepeljugoski, L. Schares, D. Kuchta, R. John, J. A. Kash, F. Libsch, "160-Gb/s bidirectional parallel optical transceiver module for board level interconnects using a single-chip CMOS IC," Proc. 57th ECTC (2007) pp. 1256-1261.

F. E. Doany, C. L. Schow, R. Budd, C. Baks, D. M. Kuchta, P. Pepeljugoski, F. Libsch, J. A. Kash, R. Dangel, F. Horst, B. J. Offrein, "Chip-to-chip board-level optical data buses," Proc. Opt. Fiber Commun. Conf. (2008).

D. M. Kuchta, VCSELs—Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers .

A. F. Benner, "Optics for high-performance servers and supercomputers," Proc. Opt. Fiber Commun. Conf. (2010).

F. Doany, C. Schow, B. Lee, A. Rylyakov, C. Jahnes, Y. Kwark, C. Baks, D. Kuchta, J. Kash, "300 Gb/s bidirectional fiber-coupled optical transceiver module based on 24 TX ${+} 24$ RX “holey” CMOS IC,," Proc. SPIE Photon. West (2011).

R. H. Johnson, D. Kuchta, "30 Gb/s directly modulated 850 nm datacom VCSELs," Proc. CLEO/QELS (2008).

B. G. Lee, C. L. Schow, A. V. Rylyakov, F. E. Doany, R. A. John, J. A. Kash, "Low-power CMOS-driven transmitters and receivers," Prof. CLEO (2010).

D. Kucharski, Y. H. Kwark, D. M. Kuchta, K. T. Kornegay, M. R. T. Tan, C.-K. Lynn, A. Tandon, "A 20 Gb/s VCSEL driver with pre-emphasis and regulated output impedance in 0.13 $\mu$m CMOS," Proc. IEEE Int. Solid-State Circuits Conf. (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.