Abstract

We report here on the design, fabrication, and high-speed performance of a compact 48-channel optical transceiver module enabled by a key novel component: a “holey” Optochip. A single CMOS transceiver chip with 24 receiver (RX) and 24 laser diode driver circuits, measuring 5.2 mm$\,\times\,$5.8 mm, becomes a holey Optochip with the fabrication of forty-eight through-substrate optical vias (holes): one for each transmitter (TX) and RX channel. Twenty-four channel, 850-nm VCSEL and photodiode arrays are directly flip-chip soldered to the Optochip with their active devices centered on the optical vias such that optical I/O is accessed through the substrate of the CMOS IC. The holey Optochip approach offers numerous advantages: 1) full compatibility with top emitting/detecting 850-nm VCSELs/PDs that are currently produced in high volumes; 2) close integration of the VCSEL/PD devices with their drive electronics for optimized high-speed performance; 3) a small-footprint, chip-scale package that minimizes CMOS die cost while maximizing transceiver packing density; 4) direct coupling to standard 4$\,\times\,$12 multimode fiber arrays through a 2-lens optical system; and 5) straightforward scaling to larger 2-D arrays of TX and RX channels.Complete transceiver modules, or holey Optomodules, have been produced by flip-chip soldering assembled Optochips to high-density, high-speed organic carriers. A pluggable connector soldered to the bottom of the Optomodule provides all module electrical I/O. The Optomodule footprint, dictated by the 1-mm connector pitch, is 21 mm$\,\times\,$21 mm. Fully functional holey Optomodules with 24 TX and 24 RX channels operate up to 12.5 Gb/s/ch achieving efficiencies (including both TX and RX) of 8.2 pJ/bit. The aggregate 300-Gb/s bi-directional data rate is the highest ever reported for single-chip transceiver modules.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription