Abstract

We report the first demonstration of 640-Gb/s return-to-zero ON–OFF keying channel transmission over a 100-km standard single-mode fiber link employing midspan phase conjugation. A frequency-degenerate conjugate field spanning more than 20 nm is created in a low-birefringence parametric mixer for the first time. Physical separation of the conjugate field from the original field is enabled by utilizing pump polarization nondegeneracy. Rigorous link characterization using a high-quality 640-Gb/s transmitter and a high-sensitivity receiver revealed error-free (bit error ratio ${<}\,10^{- 9}$) performance, eliminating the need for impractical fiber length control or electronic signal processing. The compatibility of wavelength-transparent conjugation with spectrally inefficient channel implies that channels with higher bit rates and better spectral efficiency can also be compensated.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription