Abstract

We propose a new photonic crystal fiber design with a W-shaped effective index profile to achieve the largest effective area $(A_{\rm eff})$ for telecommunication use. We realized a 220-$\mu$m$^{2} \ A_{\rm eff}$ while achieving both a cable cutoff wavelength of less than 1300 nm and a bending loss compatible with ITU-T recommendations G.655 and G. 656.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, H. Ishii, "69.1-Tb/s (432$\,\times\,$171-Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection," Proc. OFC2010 (2010).
  2. X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, "64-Tb/s (640$\,\times\,$107-Gb/s) PDM-36QAM transmission over 320 km using both pre- and post-transmission digital equalization," Proc. OFC2010 (2010).
  3. L. G. Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Edvold, D. Jakobsen, "Dispersion-compensating fibers," J. Lightw. Technol. 23, 3566-3579 (2005).
  4. T. Kato, M. Hirano, M. Onishi, M. Nishimura, "Ultra-low nonlinearity low-loss pure silica core fibre for long-haul WDM transmission," Electron. Lett. 35, 1615-1617 (1999).
  5. P. S. J. Russell, "Photonic crystal fibers; endlessly variety," J. Lightw. Technol. 24, 4729-4749 (2006).
  6. K. Tajima, "Low loss PCF by reduction of hole surface imperfection," Proc. ECOC2007 (2007).
  7. Y. Tsuchida, K. Mukasa, T. Yagi, "Comparison of microbending loss characteristics between LMA holey fibers and conventional LMA fibers," Proc. OFC2010. (2010).
  8. K. Mukasa, K. Imamura, R. Sugizaki, T. Yagi, "Comparisons of merits on wideband transmission systems between using extremely improved solid SMFs with $A_{\rm eff}$ of 160 $\mu$m$^{2}$ and loss of 0.175 dB/km and using large-$A_{\rm eff}$ holey fibers enabling transmission over 600 nm bandwidth," Proc. OFC2008 (2008).
  9. T. Matsui, K. Nakajima, C. Fukai, "Applicability of photonic crystal fiber with uniform air-hole structure to high-speed and wideband transmission over conventional telecommunication bands," J. Lightw. Technol. 27, 5410-5416 (2009).
  10. T. Matsui, T. Sakamoto, K. Tsujikawa, S. Tomita, "Single-mode photonic crystal fiber with low bending loss and $A_{\rm eff} > 200\ \mu$m$^{2}$ for ultra high-speed WDM transmission," Proc. OFC2010 (2010).
  11. Y. Tsuchida, K. Saitoh, M. Koshiba, "Design and characterization of single-mode holey fibers with low bending losses," Opt. Exp. 13, 4770-4779 (2005).
  12. G. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  13. N. Hanzawa, K. Kurokawa, K. Tsujikawa, T. Matsui, S. Tomita, "Suppression of fiber fuse propagation in photonic crystal fiber (PCF) and hole assisted fiber (HAF)," Proc. MOC2009 (2009).

2009 (1)

T. Matsui, K. Nakajima, C. Fukai, "Applicability of photonic crystal fiber with uniform air-hole structure to high-speed and wideband transmission over conventional telecommunication bands," J. Lightw. Technol. 27, 5410-5416 (2009).

2006 (1)

P. S. J. Russell, "Photonic crystal fibers; endlessly variety," J. Lightw. Technol. 24, 4729-4749 (2006).

2005 (2)

Y. Tsuchida, K. Saitoh, M. Koshiba, "Design and characterization of single-mode holey fibers with low bending losses," Opt. Exp. 13, 4770-4779 (2005).

L. G. Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Edvold, D. Jakobsen, "Dispersion-compensating fibers," J. Lightw. Technol. 23, 3566-3579 (2005).

1999 (1)

T. Kato, M. Hirano, M. Onishi, M. Nishimura, "Ultra-low nonlinearity low-loss pure silica core fibre for long-haul WDM transmission," Electron. Lett. 35, 1615-1617 (1999).

Electron. Lett. (1)

T. Kato, M. Hirano, M. Onishi, M. Nishimura, "Ultra-low nonlinearity low-loss pure silica core fibre for long-haul WDM transmission," Electron. Lett. 35, 1615-1617 (1999).

J. Lightw. Technol. (3)

P. S. J. Russell, "Photonic crystal fibers; endlessly variety," J. Lightw. Technol. 24, 4729-4749 (2006).

T. Matsui, K. Nakajima, C. Fukai, "Applicability of photonic crystal fiber with uniform air-hole structure to high-speed and wideband transmission over conventional telecommunication bands," J. Lightw. Technol. 27, 5410-5416 (2009).

L. G. Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Edvold, D. Jakobsen, "Dispersion-compensating fibers," J. Lightw. Technol. 23, 3566-3579 (2005).

Opt. Exp. (1)

Y. Tsuchida, K. Saitoh, M. Koshiba, "Design and characterization of single-mode holey fibers with low bending losses," Opt. Exp. 13, 4770-4779 (2005).

Other (8)

G. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

N. Hanzawa, K. Kurokawa, K. Tsujikawa, T. Matsui, S. Tomita, "Suppression of fiber fuse propagation in photonic crystal fiber (PCF) and hole assisted fiber (HAF)," Proc. MOC2009 (2009).

T. Matsui, T. Sakamoto, K. Tsujikawa, S. Tomita, "Single-mode photonic crystal fiber with low bending loss and $A_{\rm eff} > 200\ \mu$m$^{2}$ for ultra high-speed WDM transmission," Proc. OFC2010 (2010).

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, H. Ishii, "69.1-Tb/s (432$\,\times\,$171-Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection," Proc. OFC2010 (2010).

X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, "64-Tb/s (640$\,\times\,$107-Gb/s) PDM-36QAM transmission over 320 km using both pre- and post-transmission digital equalization," Proc. OFC2010 (2010).

K. Tajima, "Low loss PCF by reduction of hole surface imperfection," Proc. ECOC2007 (2007).

Y. Tsuchida, K. Mukasa, T. Yagi, "Comparison of microbending loss characteristics between LMA holey fibers and conventional LMA fibers," Proc. OFC2010. (2010).

K. Mukasa, K. Imamura, R. Sugizaki, T. Yagi, "Comparisons of merits on wideband transmission systems between using extremely improved solid SMFs with $A_{\rm eff}$ of 160 $\mu$m$^{2}$ and loss of 0.175 dB/km and using large-$A_{\rm eff}$ holey fibers enabling transmission over 600 nm bandwidth," Proc. OFC2008 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.