Abstract

The theory of two counter-propagating polarized beams interacting in a randomly birefringent fiber via the Kerr and Raman effects is developed and applied to the quantitative description of Raman polarizers in the undepleted regime. Here Raman polarizers, first reported by Martinelli [6], are understood as Raman amplifiers operating in the regime in which an initially weak unpolarized beam is converted into an amplified fully polarized beam towards the fiber output. Three parameters are selected for the characterization of a Raman polarizer: the degree of polarization of the outcoming beam, its state of polarization, and its gain. All of these parameters represent quantities that are averaged over all random polarization states of the initially unpolarized signal beam. The presented theory is computer friendly and applicable to virtually all practically relevant situations, including the case of co-propagating beams, and in particular to the undepleted as well as the depleted regimes of the Raman polarizer.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. C. Headley, G. P. Agrawal, Raman Amplification. Amsterdam (Elsevier, 2005).
  2. R. Hellwarth, J. Cherlow, T.-T. Yang, "Origin and frequency dependence of nonlinear susceptibilities of glasses," Phys. Rev. B 11, 964-967 (1974).
  3. R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. QE-15, 1157-1160 (1979).
  4. D. J. Dougherty, F. X. Kartner, H. A. Haus, E. P. Ippen, "Measurement of the Raman gain spectrum of optical fibers," Opt. Lett. 20, 31-33 (1995).
  5. M. Alfaid, D. van den Borne, T. Wuth, M. Kuschnerov, M. B. Astruc, P. Sillard, H. de Waardt, "Long-haul optical transmission using 111-Gb/s polarization-multiplexed DQPSK modulation," 2010 Photonics Society Summer Topical Meeting Series (2010).
  6. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, P. Martelli, "Evidence of Raman-induced polarization pulling," Opt. Exp. 17, 947-955 (2009).
  7. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, S. Wabnitz, "Theory of fiber optic Raman polarizers," Opt. Lett. 35, 3970-3972 (2010) http://arxiv.org/abs/1009.1079.
  8. L. Ursini, M. Santagiustina, L. Palmieri, "Raman nonlinear polarization pulling under pump depletion regime in randomly birefringent fibers," IEEE Photon. Technol. Lett. .
  9. Q. Lin, G. P. Agrawal, "Polarization mode dispersion induced fluctuations during Raman amplifications in optical fibers," Opt. Lett. 27, 2194-2196 (2002).
  10. Q. Lin, G. P. Agrawal, "Vector theory of stimulated Raman scattering and its applications to fiber-based Raman amplifiers," J. Opt. Soc. Amer. B 20, 1616-1631 (2003).
  11. S. V. Sergeyev, S. Yu Popov, A. T. Friberg, "Modeling polarization-dependent gain in fiber Raman amplifiers with randomly varying birefringence," Opt. Commun. 262, 114 (2006).
  12. A. Galtarossa, L. Palmieri, M. Santagiustina, L. Ursini, "Polarized backward Raman amplification in randomly birefringent fibers," J. Lightw. Technol. 24, 4055-4063 (2006).
  13. P. K. A. Wai, C. R. Menyuk, "Polarization mode dispersion, decorrelation and diffusion in optical fibers with randomly varying birefringence," J. Lightw. Technol. 14, 148-157 (1996).
  14. S. Pitois, G. Millot, S. Wabnitz, "Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: Theory and experiments," J. Opt. Soc. Amer. B. 18, 432-443 (2001).
  15. S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, M. Haelterman, "Polarization and modal attractors in conservative counterpropagating four-wave interaction," Europhys. Lett. 70, 88-94 (2005).
  16. S. Pitois, J. Fatome, G. Millot, "Polarization attraction using counterpropagating waves in optical fiber at telecommunication wavelengths," Opt. Exp. 16, 6646-6651 (2008).
  17. E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, D. Sugny, "Complete nonlinear polarization control in an optical fiber system," Opt. Lett. 35, 2025-2027 (2010).
  18. J. Fatome, S. Pitois, P. Morin, G. Millot, "Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications," Opt. Exp. 18, 15311-15317 (2010).
  19. V. V. Kozlov, J. Nuño, S. Wabnitz, "Theory of lossless polarization attraction in telecommunication fibers," J. Op. Soc. Am. B 28, 100-108 (2011).
  20. J. Fatome, P. Morin, S. Pitois, G. Millot, "Light-by-light polarization control of 10-Gbit/s RZ and NRZ telecommunication signals," J. Sel. Top. Quantum Electron. (2011).
  21. V. V. Kozlov, S. Wabnitz, "Theoretical study of polarization attraction in high-birefringence and spun fibers," Opt. Lett. 35, 3949-3951 (2010).
  22. S. Pitois, A. Sauter, G. Millot, "Simultaneous achievement of polarization attraction and Raman amplification in isotropic optical fibers," Opt. Lett. 29, 599-601 (2004).
  23. C. R. Menyuk, B. S. Marks, "Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems," J. Lightw. Technol. 24, 2806-2826 (2006).

2011 (2)

V. V. Kozlov, J. Nuño, S. Wabnitz, "Theory of lossless polarization attraction in telecommunication fibers," J. Op. Soc. Am. B 28, 100-108 (2011).

J. Fatome, P. Morin, S. Pitois, G. Millot, "Light-by-light polarization control of 10-Gbit/s RZ and NRZ telecommunication signals," J. Sel. Top. Quantum Electron. (2011).

2010 (4)

2009 (1)

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, P. Martelli, "Evidence of Raman-induced polarization pulling," Opt. Exp. 17, 947-955 (2009).

2008 (1)

S. Pitois, J. Fatome, G. Millot, "Polarization attraction using counterpropagating waves in optical fiber at telecommunication wavelengths," Opt. Exp. 16, 6646-6651 (2008).

2006 (3)

S. V. Sergeyev, S. Yu Popov, A. T. Friberg, "Modeling polarization-dependent gain in fiber Raman amplifiers with randomly varying birefringence," Opt. Commun. 262, 114 (2006).

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Ursini, "Polarized backward Raman amplification in randomly birefringent fibers," J. Lightw. Technol. 24, 4055-4063 (2006).

C. R. Menyuk, B. S. Marks, "Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems," J. Lightw. Technol. 24, 2806-2826 (2006).

2005 (1)

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, M. Haelterman, "Polarization and modal attractors in conservative counterpropagating four-wave interaction," Europhys. Lett. 70, 88-94 (2005).

2004 (1)

2003 (1)

Q. Lin, G. P. Agrawal, "Vector theory of stimulated Raman scattering and its applications to fiber-based Raman amplifiers," J. Opt. Soc. Amer. B 20, 1616-1631 (2003).

2002 (1)

2001 (1)

S. Pitois, G. Millot, S. Wabnitz, "Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: Theory and experiments," J. Opt. Soc. Amer. B. 18, 432-443 (2001).

1996 (1)

P. K. A. Wai, C. R. Menyuk, "Polarization mode dispersion, decorrelation and diffusion in optical fibers with randomly varying birefringence," J. Lightw. Technol. 14, 148-157 (1996).

1995 (1)

1979 (1)

R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. QE-15, 1157-1160 (1979).

1974 (1)

R. Hellwarth, J. Cherlow, T.-T. Yang, "Origin and frequency dependence of nonlinear susceptibilities of glasses," Phys. Rev. B 11, 964-967 (1974).

Europhys. Lett. (1)

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, M. Haelterman, "Polarization and modal attractors in conservative counterpropagating four-wave interaction," Europhys. Lett. 70, 88-94 (2005).

IEEE J. Quantum Electron. (1)

R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. QE-15, 1157-1160 (1979).

IEEE Photon. Technol. Lett. (1)

L. Ursini, M. Santagiustina, L. Palmieri, "Raman nonlinear polarization pulling under pump depletion regime in randomly birefringent fibers," IEEE Photon. Technol. Lett. .

J. Lightw. Technol. (3)

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Ursini, "Polarized backward Raman amplification in randomly birefringent fibers," J. Lightw. Technol. 24, 4055-4063 (2006).

P. K. A. Wai, C. R. Menyuk, "Polarization mode dispersion, decorrelation and diffusion in optical fibers with randomly varying birefringence," J. Lightw. Technol. 14, 148-157 (1996).

C. R. Menyuk, B. S. Marks, "Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems," J. Lightw. Technol. 24, 2806-2826 (2006).

J. Op. Soc. Am. B (1)

V. V. Kozlov, J. Nuño, S. Wabnitz, "Theory of lossless polarization attraction in telecommunication fibers," J. Op. Soc. Am. B 28, 100-108 (2011).

J. Opt. Soc. Amer. B (1)

Q. Lin, G. P. Agrawal, "Vector theory of stimulated Raman scattering and its applications to fiber-based Raman amplifiers," J. Opt. Soc. Amer. B 20, 1616-1631 (2003).

J. Opt. Soc. Amer. B. (1)

S. Pitois, G. Millot, S. Wabnitz, "Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: Theory and experiments," J. Opt. Soc. Amer. B. 18, 432-443 (2001).

J. Sel. Top. Quantum Electron. (1)

J. Fatome, P. Morin, S. Pitois, G. Millot, "Light-by-light polarization control of 10-Gbit/s RZ and NRZ telecommunication signals," J. Sel. Top. Quantum Electron. (2011).

Opt. Commun. (1)

S. V. Sergeyev, S. Yu Popov, A. T. Friberg, "Modeling polarization-dependent gain in fiber Raman amplifiers with randomly varying birefringence," Opt. Commun. 262, 114 (2006).

Opt. Exp. (3)

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, P. Martelli, "Evidence of Raman-induced polarization pulling," Opt. Exp. 17, 947-955 (2009).

J. Fatome, S. Pitois, P. Morin, G. Millot, "Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications," Opt. Exp. 18, 15311-15317 (2010).

S. Pitois, J. Fatome, G. Millot, "Polarization attraction using counterpropagating waves in optical fiber at telecommunication wavelengths," Opt. Exp. 16, 6646-6651 (2008).

Opt. Lett. (6)

Phys. Rev. B (1)

R. Hellwarth, J. Cherlow, T.-T. Yang, "Origin and frequency dependence of nonlinear susceptibilities of glasses," Phys. Rev. B 11, 964-967 (1974).

Other (2)

C. Headley, G. P. Agrawal, Raman Amplification. Amsterdam (Elsevier, 2005).

M. Alfaid, D. van den Borne, T. Wuth, M. Kuschnerov, M. B. Astruc, P. Sillard, H. de Waardt, "Long-haul optical transmission using 111-Gb/s polarization-multiplexed DQPSK modulation," 2010 Photonics Society Summer Topical Meeting Series (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.