Abstract

In the regime of strong mode coupling, the modal gains and losses and the modal group delays of a multimode fiber are known to have well-defined statistical properties. In mode-division multiplexing, mode-dependent gains and losses are known to cause fluctuations in the channel capacity, so that the capacity at finite outage probability can be substantially lower than the average capacity. Mode-dependent gains and losses, when frequency-dependent, have a coherence bandwidth that is inversely proportional to the modal group delay spread. When mode-division-multiplexed signals occupy a bandwidth far larger than the coherence bandwidth, the mode-dependent gains and losses are averaged over frequency, causing the outage capacity to approach the average capacity. The difference between the average and outage capacities is found to be inversely proportional to the square-root of a diversity order that is given approximately by the ratio of the signal bandwidth to the coherence bandwidth.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription