Abstract

A major issue in the fabrication of integrated Bragg grating (IBG) filters in highly confined waveguides is the average effective index fluctuations caused by sidewall roughness. In this work, we model the impact of this effect on IBG spectral responses and we identify key parameters that need to be controlled in order to minimize distortions. We show that only low spatial frequency components of the noise are relevant to the calculation of the IBG spectral response, which decreases considerably the computation time. Furthermore, we present an IBG emulator that allows estimation of expected fabrication yield of specific gratings given that the fabrication process is well characterized. The analysis of apodized gratings is used as an example to illustrate how this modeling can help to reduce development cost by first studying robustness of IBG designs to fabrication limitations. Finally, we study analytically the impact of sidewall roughness having short correlation lengths and small roughness variances on the spectral response of weak gratings.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. C. A. Barrios, "Electrooptic modulation of multisilicon-on-insulator photonic wires," J. Lightw. Technol. 24, 2146-2155 (2006).
  2. F. Gan, F. X. Kartner, "High-speed silicon electrooptic modulator design," IEEE Photon. Technol. Lett. 17, 1007-1009 (2005).
  3. A. H. Atabaki, M. Soltani, S. Yegnanarayanan, A. A. Eftekhar, A. Adibi, "Optimization of metallic micro-heaters for reconfigurable silicon photonics," Conf. on Lasers and Electro-Optics (CLEO) and the Int. Quantum Electronics Conf. (IQEC) (2009) CThB4.
  4. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, W. S. Rabinovich, "Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities," Opt. Expr. 15, 7557-7563 (2007).
  5. A. D. Simard, Y. Painchaud, S. LaRochelle, "Integrated Bragg gratings in curved waveguides," 23rd Annu. Meeting of the Photonics Society Denver (2010) ThU3.
  6. S. Zamek, D. T. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, Y. Fainman, "Compact chip-scale filter based on curved waveguide Bragg gratings," Opt. Lett. 35, 3477-3479 (2010).
  7. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO$_2$ waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617 (2000).
  8. T. Barwicz, H. A. Haus, "Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides," J. Lightw. Technol. 23, 2719-2732 (2005).
  9. C. Ciminelli, F. Dell'Olio, V. Passaro, M. Armenise, "Fully three-dimensional accurate modeling of scattering loss in optical waveguides," Opt. Quant. Electron 41, 285-298 (2009).
  10. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, F. Cerrina, "Fabrication of ultralow-loss Si/SiO$_2$ waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001).
  11. S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di Muri, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, M. C. Ubaldi, "Line edge roughness (LER) reduction strategy for SOI waveguides fabrication," Microelectron. Eng. 85, 1210-1213 (2008).
  12. L. Poladian, F. Ladouceur, P. D. Miller, "Effects of surface roughness on gratings," J. Opt. Soc. Am. B 14, 1339-1344 (1997).
  13. K. P. Yap, J. Lapointe, B. Lamontagne, A. Delâge, A. Bogdanov, S. Janz, B. Syretta, "SOI waveguide fabrication process development using star coupler scattering loss measurements," Proc. Device and Process Technologies for Microelectronics, MEMS, Photonics, and Nanotechnology IV, SPIE (2008) pp. 680014.
  14. F. Ladouceur, J. D. Love, T. J. Senden, "Measurement of surface roughness in buried channel waveguides," Electron. Lett. 28, 1321-1322 (1992).
  15. K. Dossou, M. Fontaine, "A high order isoparametric finite element method for the computation of waveguide modes," Comput. Methods Appl. Mech. Engrg 194, 837-858 (2004).
  16. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, "Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology," IEEE J. Sel. Top. Quantum Elect. 16, 316-324 (2010).
  17. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
  18. P. Dumon, Ultra-Compact integrated optical filters in silicon-on-insulator by means of wafer-scale technology Ph.D. dissertation Universiteit GhentGhent, Belgium (2006).
  19. G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, G. Grozev, "Quantification of line-edge roughness of photoresists. I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images," J. Vac. Sci. Technol., B 21, 1008-1018 (2003).
  20. V. Constantoudis, G. P. Patsis, E. Gogolides, "Photoresist line-edge roughness analysis using scaling concepts," J. Microlithogr., Microfabr. Microsyst. 3, 429-435 (2004).
  21. P. P. Naulleau, J. P. Cain, "Experimental and model-based study of the robustness of line-edge roughness metric extraction in the presence of noise," J. Vac. Sci. Technol., B 25, 1647-1657 (2007).
  22. J. Skaar, Synthesis and characterization of fiber Bragg gratings Ph.D. dissertation Norwegian Univ. of Sci. Technol.Trondheim, Norway (2000).
  23. S. Spector, M. W. Geis, D. Lennon, R. C. Williamson, T. M. Lyszczarz, "Hybrid multi-mode/single-mode waveguides for low loss," Opt. Amplif. Applicat./Integr. Photon. Res. (2004) IThE5.
  24. M. A. Webster, R. M. Pafchek, G. Sukumaran, T. L. Koch, "Low-loss quasi-planar ridge waveguides formed on thin silicon-on-Insulator," Appl. Phys. Lett. 87, 231108 (2005).

2010 (2)

S. Zamek, D. T. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, Y. Fainman, "Compact chip-scale filter based on curved waveguide Bragg gratings," Opt. Lett. 35, 3477-3479 (2010).

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, "Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology," IEEE J. Sel. Top. Quantum Elect. 16, 316-324 (2010).

2009 (1)

C. Ciminelli, F. Dell'Olio, V. Passaro, M. Armenise, "Fully three-dimensional accurate modeling of scattering loss in optical waveguides," Opt. Quant. Electron 41, 285-298 (2009).

2008 (1)

S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di Muri, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, M. C. Ubaldi, "Line edge roughness (LER) reduction strategy for SOI waveguides fabrication," Microelectron. Eng. 85, 1210-1213 (2008).

2007 (2)

P. P. Naulleau, J. P. Cain, "Experimental and model-based study of the robustness of line-edge roughness metric extraction in the presence of noise," J. Vac. Sci. Technol., B 25, 1647-1657 (2007).

M. W. Pruessner, T. H. Stievater, M. S. Ferraro, W. S. Rabinovich, "Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities," Opt. Expr. 15, 7557-7563 (2007).

2006 (1)

C. A. Barrios, "Electrooptic modulation of multisilicon-on-insulator photonic wires," J. Lightw. Technol. 24, 2146-2155 (2006).

2005 (3)

F. Gan, F. X. Kartner, "High-speed silicon electrooptic modulator design," IEEE Photon. Technol. Lett. 17, 1007-1009 (2005).

T. Barwicz, H. A. Haus, "Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides," J. Lightw. Technol. 23, 2719-2732 (2005).

M. A. Webster, R. M. Pafchek, G. Sukumaran, T. L. Koch, "Low-loss quasi-planar ridge waveguides formed on thin silicon-on-Insulator," Appl. Phys. Lett. 87, 231108 (2005).

2004 (3)

V. Constantoudis, G. P. Patsis, E. Gogolides, "Photoresist line-edge roughness analysis using scaling concepts," J. Microlithogr., Microfabr. Microsyst. 3, 429-435 (2004).

S. Spector, M. W. Geis, D. Lennon, R. C. Williamson, T. M. Lyszczarz, "Hybrid multi-mode/single-mode waveguides for low loss," Opt. Amplif. Applicat./Integr. Photon. Res. (2004) IThE5.

K. Dossou, M. Fontaine, "A high order isoparametric finite element method for the computation of waveguide modes," Comput. Methods Appl. Mech. Engrg 194, 837-858 (2004).

2003 (1)

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, G. Grozev, "Quantification of line-edge roughness of photoresists. I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images," J. Vac. Sci. Technol., B 21, 1008-1018 (2003).

2001 (1)

2000 (1)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO$_2$ waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617 (2000).

1997 (2)

1992 (1)

F. Ladouceur, J. D. Love, T. J. Senden, "Measurement of surface roughness in buried channel waveguides," Electron. Lett. 28, 1321-1322 (1992).

Appl. Phys. Lett. (2)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO$_2$ waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617 (2000).

M. A. Webster, R. M. Pafchek, G. Sukumaran, T. L. Koch, "Low-loss quasi-planar ridge waveguides formed on thin silicon-on-Insulator," Appl. Phys. Lett. 87, 231108 (2005).

Comput. Methods Appl. Mech. Engrg (1)

K. Dossou, M. Fontaine, "A high order isoparametric finite element method for the computation of waveguide modes," Comput. Methods Appl. Mech. Engrg 194, 837-858 (2004).

Electron. Lett. (1)

F. Ladouceur, J. D. Love, T. J. Senden, "Measurement of surface roughness in buried channel waveguides," Electron. Lett. 28, 1321-1322 (1992).

IEEE J. Sel. Top. Quantum Elect. (1)

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, "Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology," IEEE J. Sel. Top. Quantum Elect. 16, 316-324 (2010).

IEEE Photon. Technol. Lett. (1)

F. Gan, F. X. Kartner, "High-speed silicon electrooptic modulator design," IEEE Photon. Technol. Lett. 17, 1007-1009 (2005).

J. Lightw. Technol. (1)

C. A. Barrios, "Electrooptic modulation of multisilicon-on-insulator photonic wires," J. Lightw. Technol. 24, 2146-2155 (2006).

J. Vac. Sci. Technol., B (1)

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, G. Grozev, "Quantification of line-edge roughness of photoresists. I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images," J. Vac. Sci. Technol., B 21, 1008-1018 (2003).

J. Lightw. Technol. (1)

T. Barwicz, H. A. Haus, "Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides," J. Lightw. Technol. 23, 2719-2732 (2005).

J. Lightwave Technol. (1)

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).

J. Microlithogr., Microfabr. Microsyst. (1)

V. Constantoudis, G. P. Patsis, E. Gogolides, "Photoresist line-edge roughness analysis using scaling concepts," J. Microlithogr., Microfabr. Microsyst. 3, 429-435 (2004).

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol., B (1)

P. P. Naulleau, J. P. Cain, "Experimental and model-based study of the robustness of line-edge roughness metric extraction in the presence of noise," J. Vac. Sci. Technol., B 25, 1647-1657 (2007).

Microelectron. Eng. (1)

S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di Muri, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, M. C. Ubaldi, "Line edge roughness (LER) reduction strategy for SOI waveguides fabrication," Microelectron. Eng. 85, 1210-1213 (2008).

Opt. Expr. (1)

M. W. Pruessner, T. H. Stievater, M. S. Ferraro, W. S. Rabinovich, "Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities," Opt. Expr. 15, 7557-7563 (2007).

Opt. Quant. Electron (1)

C. Ciminelli, F. Dell'Olio, V. Passaro, M. Armenise, "Fully three-dimensional accurate modeling of scattering loss in optical waveguides," Opt. Quant. Electron 41, 285-298 (2009).

Opt. Amplif. Applicat./Integr. Photon. Res. (1)

S. Spector, M. W. Geis, D. Lennon, R. C. Williamson, T. M. Lyszczarz, "Hybrid multi-mode/single-mode waveguides for low loss," Opt. Amplif. Applicat./Integr. Photon. Res. (2004) IThE5.

Opt. Lett. (2)

Other (5)

K. P. Yap, J. Lapointe, B. Lamontagne, A. Delâge, A. Bogdanov, S. Janz, B. Syretta, "SOI waveguide fabrication process development using star coupler scattering loss measurements," Proc. Device and Process Technologies for Microelectronics, MEMS, Photonics, and Nanotechnology IV, SPIE (2008) pp. 680014.

P. Dumon, Ultra-Compact integrated optical filters in silicon-on-insulator by means of wafer-scale technology Ph.D. dissertation Universiteit GhentGhent, Belgium (2006).

A. D. Simard, Y. Painchaud, S. LaRochelle, "Integrated Bragg gratings in curved waveguides," 23rd Annu. Meeting of the Photonics Society Denver (2010) ThU3.

A. H. Atabaki, M. Soltani, S. Yegnanarayanan, A. A. Eftekhar, A. Adibi, "Optimization of metallic micro-heaters for reconfigurable silicon photonics," Conf. on Lasers and Electro-Optics (CLEO) and the Int. Quantum Electronics Conf. (IQEC) (2009) CThB4.

J. Skaar, Synthesis and characterization of fiber Bragg gratings Ph.D. dissertation Norwegian Univ. of Sci. Technol.Trondheim, Norway (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.