Abstract

An impulse-radio ultrawideband (UWB) photonic generation technique based on frequency shifting in the remote connectivity fiber in optical access networks is proposed and analyzed in this paper. This technique is based on optical carrier suppression modulation combined with fiber chromatic dispersion targeting to overcome the bandwidth limitation of optical upconversion, with the advantage of being easily reconfigurable generating simultaneously different RF bands. A comprehensive simulation analysis is performed with special focus on capabilities for dual 24 GHz/60 GHz operation paired with experimental demonstration at 1.24 Gb/s. 60 GHz wireless performance after optical generation and transmission in 12.5km of standard single-mode fiber is measured demonstrating error-free transmission at 1 m radio distance. The inclusion of remote Gaussian-monocycle pulse shaping is also analyzed in this paper considering dual 24 GHz/60 GHz operation. Pulse-shaped dual 24 GHz/60 GHz generation is experimentally demonstrated at 1.24 Gb/s. Transmission performance is measured at 24 GHz demonstrating error-free transmission. The simulation analysis further indicates that the technique is suitable for UWB generation at higher RF bands such as the <i>W</i>-band (75–110 GHz). Practical implementation considerations and trade-offs (e.g., in terms of cost and number of remote antenna units supported) of this system are also analyzed by simulation showing that the technique is cost effective.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. H. Gelke, Wireless 480 Mbit/s UWB Link for Embedded Systems http://www.ines.zhaw.ch/uwbmac (2009).
  2. “Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems,” FCC Rep. FCC 02-48 (2002).
  3. “Electromagnetic Compatibility and Radio Spectrum Matters (ERM); Short Range Devices (SRD) Using Ultra Wide Band Technology (UWB) for Communications Purposes; Harmonized EN Covering the Essential Requirements of Article 3.2 of the R&TTE Directive,” ETSI EN 302 065 v1.2.1, Oct. 2010 .
  4. “UWB (Ultra-WideBand) Radio System,” ARIB STD-T91 v1.1, Sep. 2008 .
  5. M. Kunert, G. Rollman, H.-L. Bloecher, J. Schuermann, "24 GHz ultra-wideband vehicular short range radar systems: Technology and regulatory aspects overview," Proc. Int. Wroclaw Symp. Exhibition Electromagn. Compatibility (2006) http://www.sara-group.org.
  6. K. Takahashi, Y. Aoyagi, "Development of ultra wideband radio system for short-range applications," Furukawa Review (2010).
  7. “60 GHz Multiple-Gigabit WAS/RLAN Systems,” ETSI Standard EN 302 567 (2009) Rev. 1.1.1.
  8. R. C. Daniels, R. W. Heath, "60 GHz wireless communications: Emerging requirements and design recommendations," IEEE Veh. Technol. Mag. 2, 41-50 (2007).
  9. M. Beltrán, J. B. Jensen, X. Yu, R. Llorente, R. Rodes, M. Ortsiefer, C. Neumeyr, I. T. Monroy, "Performance of a 60-GHz DCM-OFDM and BPSK-impulse ultra-wideband system with radio-over-fiber and wireless transmission employing a directly-modulated VCSEL," IEEE J. Sel. Areas Commun. 29, 1295-1303 (2011).
  10. M. Beltrán, R. Llorente, "60-GHz ultra-wideband radio-over-fiber system using a novel photonic monocycle generation," IEEE Trans. Microw. Theory Tech. 58, 1609-1620 (2010).
  11. R. Llorente, T. Alves, M. Morant, M. Beltrán, J. Perez, A. Cartaxo, J. Marti, "Ultra-wideband radio signals distribution in FTTH networks," IEEE Photon. Technol. Lett. 20, 945-947 (2008).
  12. T. Kuri, Y. Omiya, T. Kawanishi, S. Hara, K. Kitayama, "Optical transmitter and receiver of 24-GHz ultra-wideband signal by direct photonic conversion techniques," IEEE Int. Top. Meet. Microw. Photon. (2006) pp. 1-4.
  13. M. Abtahi, M. Mirshafiei, S. LaRochelle, L. A. Rusch, "All-optical 500-Mb/s UWB transceiver: An experimental demonstration," J. Lightw. Technol. 26, 2795-2802 (2008).
  14. S. Pan, J. Yao, "Photonic generation of chirp-free UWB signals for UWB over fiber applications," IEEE Int. Top. Meet. Microw. Photon. (2009) pp. 1-4.
  15. H. Shams, A. Kaszubowska-Anandarajah, P. Perry, P. Anandarajah, L. P. Barry, "Electro-optical generation and distribution of ultrawideband signals based on the gain switching technique," J. Opt. Commun. Netw. 2, 122-130 (2010).
  16. X. Yu, I. T. Monroy, "Distribution of photonically generated 5 Gbits/s impulse radio ultrawideband signals over fiber," Opt. Lett. 36, 810-812 (2011).
  17. Y. Zhu, J. E. Zuegel, J. R. Marciante, H. Wu, "Distributed waveform generator: A new circuit technique for ultra-wideband pulse generation, shaping and modulation," IEEE J. Solid-State Circuits 44, 808-823 (2009).
  18. Y. Le Guennec, R. Gary, "Optical frequency conversion for millimeter-wave ultra-wideband-over-fiber systems," IEEE Photon. Technol. Lett. 19, 996-998 (2007).
  19. S. Fu, W.-D. Zhong, Y. J. Wen, P. Shum, "Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications," IEEE Photon. Technol. Lett. 20, 1006-1008 (2008).
  20. Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, "A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion," IEEE Photon. Technol. Lett. 20, 1651-1653 (2008).
  21. J. Li, Y. Liang, K. K.-Y. Wong, "Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier," IEEE Photon. Technol. Lett. 21, 1172-1174 (2009).
  22. T. B. Gibbon, X. Yu, R. Gamatham, N. G. Gonzalez, R. Rodes, J. B. Jensen, A. Caballero, I. T. Monroy, "3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution over a 50 km fiber with wireless transmission," IEEE Microw. Wireless Compon. Lett. 20, 127-129 (2010).
  23. C. W. Chow, F. M. Kuo, J. W. Shi, C. H. Yeh, Y. F. Wu, C. H. Wang, Y. T. Li, C. L. Pan, "100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks," Opt. Exp. 18, 473-478 (2010).
  24. M. Beltrán, R. Llorente, "Optical generation with FTTH transmission of 60 GHz impulse-radio ultra-wideband signals," Access Netw. In-House Commun. KarlsruheGermany (2010) paper AWC7.
  25. J. Azaña, M. A. Muriel, "Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings," IEEE J. Quantum Electron. 36, 517-526 (2000).
  26. J. U. Kang, M. Y. Frankel, R. D. Esman, "Demonstration of microwave frequency shifting by use of a highly chirped mode-locked fiber laser," Opt. Lett. 23, 1188-1190 (1998).
  27. F. Coppinger, A. S. Bhushan, B. Jalali, "Time reversal of broadband microwave signals," Electron. Lett. 35, 1230-1232 (1999).
  28. Y. Han, B. Jalali, "Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations," J. Lightw. Technol. 21, 3085-3103 (2003).
  29. J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, L. Chen, "Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN–MZM intensity modulation," J. Lightw. Technol. 25, 3244-3256 (2007).
  30. H. Sheng, P. Orlik, A. M. Haimovich, L. J. Cimini, J. Zhang, "On the spectral and power requirements for ultra-wideband transmission," IEEE Int. Conf. Commun. (2003) pp. 738-742.
  31. K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, K. Kokura, "Dispersion compensating fiber used as a transmission fiber: Inverse/reverse dispersion fiber," J. Opt. Fiber Commun. Rep. 3, 292-339 (2006).
  32. “Operation Within the Band 57–64 GHz,” FCC Rep. FCC 15.255 (2002).
  33. M. Beltrán, R. Sambaraju, A. La Porta, R. Llorente, J. Perez, "Photonic generation and envelope detection of millimeter-wave ultra-wideband impulse-radio employing Mach–Zehnder modulators," IEEE Int. Conf. Ultra-Wideband (2009) pp. 428-432.
  34. L. A. Jiang, E. P. Ippen, H. Yokoyama, "Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission," J. Opt. Fiber. Commun. Rep. 2, 1-31 (2005).
  35. “Pico-Second Laser Source With Monolithic Mode-Locked Semiconductor Laser Chip (PSLS10),” ${\rm u}^{2}{\rm t}$ Photonics, BerlinGermany. http://u2t.de.
  36. A. Martinez, S. Yamashita, "Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes," Opt. Exp. 19, 6155-6163 (2011).
  37. A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, "Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide," Semicond. Sci. Technol. 23, 1-7 (2008).
  38. C. Wang, J. P. Yao, "Simultaneous optical spectral shaping and wavelength-to-time mapping for photonic microwave arbitrary waveform generation," IEEE Photon. Technol. Lett. 21, 793-795 (2009).
  39. X. Yi, C. Lu, X. Yang, W. Zhong, F. Wei, L. Ding, Y. Wang, "Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating," IEEE Photon. Technol. Lett. 15, 754-756 (2003).
  40. R. Sambaraju, D. Zibar, A. Caballero, I. T. Monroy, R. Alemany, J. Herrera, "100-GHz wireless-over-fiber links with up to 16-Gb/s QPSK modulation using optical heterodyne generation and digital coherent detection," IEEE Photon. Technol. Lett. 22, 1650-1652 (2010).

2011 (3)

M. Beltrán, J. B. Jensen, X. Yu, R. Llorente, R. Rodes, M. Ortsiefer, C. Neumeyr, I. T. Monroy, "Performance of a 60-GHz DCM-OFDM and BPSK-impulse ultra-wideband system with radio-over-fiber and wireless transmission employing a directly-modulated VCSEL," IEEE J. Sel. Areas Commun. 29, 1295-1303 (2011).

X. Yu, I. T. Monroy, "Distribution of photonically generated 5 Gbits/s impulse radio ultrawideband signals over fiber," Opt. Lett. 36, 810-812 (2011).

A. Martinez, S. Yamashita, "Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes," Opt. Exp. 19, 6155-6163 (2011).

2010 (6)

R. Sambaraju, D. Zibar, A. Caballero, I. T. Monroy, R. Alemany, J. Herrera, "100-GHz wireless-over-fiber links with up to 16-Gb/s QPSK modulation using optical heterodyne generation and digital coherent detection," IEEE Photon. Technol. Lett. 22, 1650-1652 (2010).

T. B. Gibbon, X. Yu, R. Gamatham, N. G. Gonzalez, R. Rodes, J. B. Jensen, A. Caballero, I. T. Monroy, "3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution over a 50 km fiber with wireless transmission," IEEE Microw. Wireless Compon. Lett. 20, 127-129 (2010).

C. W. Chow, F. M. Kuo, J. W. Shi, C. H. Yeh, Y. F. Wu, C. H. Wang, Y. T. Li, C. L. Pan, "100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks," Opt. Exp. 18, 473-478 (2010).

M. Beltrán, R. Llorente, "60-GHz ultra-wideband radio-over-fiber system using a novel photonic monocycle generation," IEEE Trans. Microw. Theory Tech. 58, 1609-1620 (2010).

K. Takahashi, Y. Aoyagi, "Development of ultra wideband radio system for short-range applications," Furukawa Review (2010).

H. Shams, A. Kaszubowska-Anandarajah, P. Perry, P. Anandarajah, L. P. Barry, "Electro-optical generation and distribution of ultrawideband signals based on the gain switching technique," J. Opt. Commun. Netw. 2, 122-130 (2010).

2009 (3)

Y. Zhu, J. E. Zuegel, J. R. Marciante, H. Wu, "Distributed waveform generator: A new circuit technique for ultra-wideband pulse generation, shaping and modulation," IEEE J. Solid-State Circuits 44, 808-823 (2009).

C. Wang, J. P. Yao, "Simultaneous optical spectral shaping and wavelength-to-time mapping for photonic microwave arbitrary waveform generation," IEEE Photon. Technol. Lett. 21, 793-795 (2009).

J. Li, Y. Liang, K. K.-Y. Wong, "Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier," IEEE Photon. Technol. Lett. 21, 1172-1174 (2009).

2008 (5)

A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, "Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide," Semicond. Sci. Technol. 23, 1-7 (2008).

S. Fu, W.-D. Zhong, Y. J. Wen, P. Shum, "Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications," IEEE Photon. Technol. Lett. 20, 1006-1008 (2008).

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, "A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion," IEEE Photon. Technol. Lett. 20, 1651-1653 (2008).

R. Llorente, T. Alves, M. Morant, M. Beltrán, J. Perez, A. Cartaxo, J. Marti, "Ultra-wideband radio signals distribution in FTTH networks," IEEE Photon. Technol. Lett. 20, 945-947 (2008).

M. Abtahi, M. Mirshafiei, S. LaRochelle, L. A. Rusch, "All-optical 500-Mb/s UWB transceiver: An experimental demonstration," J. Lightw. Technol. 26, 2795-2802 (2008).

2007 (3)

R. C. Daniels, R. W. Heath, "60 GHz wireless communications: Emerging requirements and design recommendations," IEEE Veh. Technol. Mag. 2, 41-50 (2007).

Y. Le Guennec, R. Gary, "Optical frequency conversion for millimeter-wave ultra-wideband-over-fiber systems," IEEE Photon. Technol. Lett. 19, 996-998 (2007).

J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, L. Chen, "Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN–MZM intensity modulation," J. Lightw. Technol. 25, 3244-3256 (2007).

2006 (2)

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, K. Kokura, "Dispersion compensating fiber used as a transmission fiber: Inverse/reverse dispersion fiber," J. Opt. Fiber Commun. Rep. 3, 292-339 (2006).

M. Kunert, G. Rollman, H.-L. Bloecher, J. Schuermann, "24 GHz ultra-wideband vehicular short range radar systems: Technology and regulatory aspects overview," Proc. Int. Wroclaw Symp. Exhibition Electromagn. Compatibility (2006) http://www.sara-group.org.

2005 (1)

L. A. Jiang, E. P. Ippen, H. Yokoyama, "Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission," J. Opt. Fiber. Commun. Rep. 2, 1-31 (2005).

2003 (2)

X. Yi, C. Lu, X. Yang, W. Zhong, F. Wei, L. Ding, Y. Wang, "Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating," IEEE Photon. Technol. Lett. 15, 754-756 (2003).

Y. Han, B. Jalali, "Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations," J. Lightw. Technol. 21, 3085-3103 (2003).

2000 (1)

J. Azaña, M. A. Muriel, "Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings," IEEE J. Quantum Electron. 36, 517-526 (2000).

1999 (1)

F. Coppinger, A. S. Bhushan, B. Jalali, "Time reversal of broadband microwave signals," Electron. Lett. 35, 1230-1232 (1999).

1998 (1)

Electron. Lett. (1)

F. Coppinger, A. S. Bhushan, B. Jalali, "Time reversal of broadband microwave signals," Electron. Lett. 35, 1230-1232 (1999).

Furukawa Review (1)

K. Takahashi, Y. Aoyagi, "Development of ultra wideband radio system for short-range applications," Furukawa Review (2010).

IEEE Photon. Technol. Lett. (1)

S. Fu, W.-D. Zhong, Y. J. Wen, P. Shum, "Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications," IEEE Photon. Technol. Lett. 20, 1006-1008 (2008).

IEEE Trans. Microw. Theory Tech. (1)

M. Beltrán, R. Llorente, "60-GHz ultra-wideband radio-over-fiber system using a novel photonic monocycle generation," IEEE Trans. Microw. Theory Tech. 58, 1609-1620 (2010).

IEEE Veh. Technol. Mag. (1)

R. C. Daniels, R. W. Heath, "60 GHz wireless communications: Emerging requirements and design recommendations," IEEE Veh. Technol. Mag. 2, 41-50 (2007).

IEEE J. Quantum Electron. (1)

J. Azaña, M. A. Muriel, "Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings," IEEE J. Quantum Electron. 36, 517-526 (2000).

IEEE J. Sel. Areas Commun. (1)

M. Beltrán, J. B. Jensen, X. Yu, R. Llorente, R. Rodes, M. Ortsiefer, C. Neumeyr, I. T. Monroy, "Performance of a 60-GHz DCM-OFDM and BPSK-impulse ultra-wideband system with radio-over-fiber and wireless transmission employing a directly-modulated VCSEL," IEEE J. Sel. Areas Commun. 29, 1295-1303 (2011).

IEEE J. Solid-State Circuits (1)

Y. Zhu, J. E. Zuegel, J. R. Marciante, H. Wu, "Distributed waveform generator: A new circuit technique for ultra-wideband pulse generation, shaping and modulation," IEEE J. Solid-State Circuits 44, 808-823 (2009).

IEEE Microw. Wireless Compon. Lett. (1)

T. B. Gibbon, X. Yu, R. Gamatham, N. G. Gonzalez, R. Rodes, J. B. Jensen, A. Caballero, I. T. Monroy, "3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution over a 50 km fiber with wireless transmission," IEEE Microw. Wireless Compon. Lett. 20, 127-129 (2010).

IEEE Photon. Technol. Lett. (1)

Y. Le Guennec, R. Gary, "Optical frequency conversion for millimeter-wave ultra-wideband-over-fiber systems," IEEE Photon. Technol. Lett. 19, 996-998 (2007).

IEEE Photon. Technol. Lett. (6)

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, "A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion," IEEE Photon. Technol. Lett. 20, 1651-1653 (2008).

J. Li, Y. Liang, K. K.-Y. Wong, "Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier," IEEE Photon. Technol. Lett. 21, 1172-1174 (2009).

R. Llorente, T. Alves, M. Morant, M. Beltrán, J. Perez, A. Cartaxo, J. Marti, "Ultra-wideband radio signals distribution in FTTH networks," IEEE Photon. Technol. Lett. 20, 945-947 (2008).

C. Wang, J. P. Yao, "Simultaneous optical spectral shaping and wavelength-to-time mapping for photonic microwave arbitrary waveform generation," IEEE Photon. Technol. Lett. 21, 793-795 (2009).

X. Yi, C. Lu, X. Yang, W. Zhong, F. Wei, L. Ding, Y. Wang, "Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating," IEEE Photon. Technol. Lett. 15, 754-756 (2003).

R. Sambaraju, D. Zibar, A. Caballero, I. T. Monroy, R. Alemany, J. Herrera, "100-GHz wireless-over-fiber links with up to 16-Gb/s QPSK modulation using optical heterodyne generation and digital coherent detection," IEEE Photon. Technol. Lett. 22, 1650-1652 (2010).

J. Opt. Fiber Commun. Rep. (1)

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, K. Kokura, "Dispersion compensating fiber used as a transmission fiber: Inverse/reverse dispersion fiber," J. Opt. Fiber Commun. Rep. 3, 292-339 (2006).

J. Opt. Fiber. Commun. Rep. (1)

L. A. Jiang, E. P. Ippen, H. Yokoyama, "Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission," J. Opt. Fiber. Commun. Rep. 2, 1-31 (2005).

J. Lightw. Technol. (3)

Y. Han, B. Jalali, "Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations," J. Lightw. Technol. 21, 3085-3103 (2003).

J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, L. Chen, "Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN–MZM intensity modulation," J. Lightw. Technol. 25, 3244-3256 (2007).

M. Abtahi, M. Mirshafiei, S. LaRochelle, L. A. Rusch, "All-optical 500-Mb/s UWB transceiver: An experimental demonstration," J. Lightw. Technol. 26, 2795-2802 (2008).

J. Opt. Commun. Netw. (1)

Opt. Exp. (1)

C. W. Chow, F. M. Kuo, J. W. Shi, C. H. Yeh, Y. F. Wu, C. H. Wang, Y. T. Li, C. L. Pan, "100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks," Opt. Exp. 18, 473-478 (2010).

Opt. Exp. (1)

A. Martinez, S. Yamashita, "Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes," Opt. Exp. 19, 6155-6163 (2011).

Opt. Lett. (2)

Proc. Int. Wroclaw Symp. Exhibition Electromagn. Compatibility (1)

M. Kunert, G. Rollman, H.-L. Bloecher, J. Schuermann, "24 GHz ultra-wideband vehicular short range radar systems: Technology and regulatory aspects overview," Proc. Int. Wroclaw Symp. Exhibition Electromagn. Compatibility (2006) http://www.sara-group.org.

Semicond. Sci. Technol. (1)

A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, "Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide," Semicond. Sci. Technol. 23, 1-7 (2008).

Other (12)

M. Beltrán, R. Llorente, "Optical generation with FTTH transmission of 60 GHz impulse-radio ultra-wideband signals," Access Netw. In-House Commun. KarlsruheGermany (2010) paper AWC7.

H. Sheng, P. Orlik, A. M. Haimovich, L. J. Cimini, J. Zhang, "On the spectral and power requirements for ultra-wideband transmission," IEEE Int. Conf. Commun. (2003) pp. 738-742.

“Pico-Second Laser Source With Monolithic Mode-Locked Semiconductor Laser Chip (PSLS10),” ${\rm u}^{2}{\rm t}$ Photonics, BerlinGermany. http://u2t.de.

“Operation Within the Band 57–64 GHz,” FCC Rep. FCC 15.255 (2002).

M. Beltrán, R. Sambaraju, A. La Porta, R. Llorente, J. Perez, "Photonic generation and envelope detection of millimeter-wave ultra-wideband impulse-radio employing Mach–Zehnder modulators," IEEE Int. Conf. Ultra-Wideband (2009) pp. 428-432.

S. Pan, J. Yao, "Photonic generation of chirp-free UWB signals for UWB over fiber applications," IEEE Int. Top. Meet. Microw. Photon. (2009) pp. 1-4.

T. Kuri, Y. Omiya, T. Kawanishi, S. Hara, K. Kitayama, "Optical transmitter and receiver of 24-GHz ultra-wideband signal by direct photonic conversion techniques," IEEE Int. Top. Meet. Microw. Photon. (2006) pp. 1-4.

“60 GHz Multiple-Gigabit WAS/RLAN Systems,” ETSI Standard EN 302 567 (2009) Rev. 1.1.1.

H. Gelke, Wireless 480 Mbit/s UWB Link for Embedded Systems http://www.ines.zhaw.ch/uwbmac (2009).

“Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems,” FCC Rep. FCC 02-48 (2002).

“Electromagnetic Compatibility and Radio Spectrum Matters (ERM); Short Range Devices (SRD) Using Ultra Wide Band Technology (UWB) for Communications Purposes; Harmonized EN Covering the Essential Requirements of Article 3.2 of the R&TTE Directive,” ETSI EN 302 065 v1.2.1, Oct. 2010 .

“UWB (Ultra-WideBand) Radio System,” ARIB STD-T91 v1.1, Sep. 2008 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.