Abstract

We study the phase and amplitude stability of RF signals, generated at different frequencies by heterodyning pairs of modes from the optical spectrum of an active mode-locked laser, and we focus on the dependence of noise on the RF frequency. A specific theoretical model is derived, and the amplitude and timing jitter behaviour of the RF signals are analyzed and experimentally validated. The timing jitter reveals to be constant at any RF generated frequency, making the considered RF generation method suitable for the realization of flexible and highly stable micro- and millimeter-wave coherent radar transceivers. The performance of the considered RF generation architecture are compared with a state-of-the-art RF synthesizer, proving that the optically generated RF signals meet the high stability requirements of the new generation of coherent radar systems, even at extremely high frequencies (EHF).

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription