Abstract

We report an experimental investigation on remote transfer of a femtosecond-laser frequency comb through an open atmospheric link. Optical multiheterodyne is used to measure the excess phase noise and the frequency stability of the transferred comb. The dispersion of air is found to have a minimal impact on the multiheterodyne signal, and the effectiveness of the technique to characterize the behaviors of comb lines under the influence of turbulence is theoretically analyzed. Large phase modulation due to the index fluctuation of the air over a 60-m transmission link is found to cause a significant linewidth broadening. Under low-wind conditions, a fractional frequency stability in the order of 10<sup>-14</sup> has been achieved over several minutes with a 1-s averaging time. A comparison of this work with previous tests based on continuous wave (CW) lasers indicates that pulsed lasers can work as well as CW lasers for remote transfer of optical frequency references through the atmosphere.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. P. A. Williams, W. C. Swann, N. R. Newbury, "High-stability transfer of an optical frequency over long fiber-optic links," J. Opt. Soc. Amer. B 25, 1284-1293 (2008).
  2. M. Musha1, F. Hong, K. Nakagawa, K. Ueda, "Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network," Opt. Exp. 16, 16459-16466 (2008).
  3. G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, H. Schnatz1, "Optical frequency transfer via 146 km fiber link with 10–19 relative accuracy," Opt. Lett. 34, 2270-2272 (2009).
  4. K. W. Holman, D. J. Jones, D. D. Hudson, J. Ye, "Precise frequency transfer through a fiber network by use of 1.5- $\mu$m mode-locked sources," Opt. Lett. 29, 1554-1556 (2004).
  5. J. Kim, J. A. Cox, J. Chen, F. X. Kaertner, "Drift-free femtosecond timing synchronization of remote optical and microwave sources," Nat. Photonics 2, 733-736 (2008).
  6. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, J. Ye, "Remote transfer of ultrastable frequency references via fiber networks," Rev. Sci. Instrum. 78, 021101 (2007).
  7. A. Alatawi, R. P. Gollapalli, L. Duan, "Radio frequency clock delivery via free-space frequency comb transmission," Opt. Lett. 34, 3346-3348 (2009).
  8. B. Sprenger, J. Zhang, Z. H. Lu, L. J. Wang, "Atmospheric transfer of optical and radio frequency clock signals," Opt. Lett. 34, 965-967 (2009).
  9. K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, P. Wolf, "Coherent optical link through the turbulent atmosphere," Opt. Lett. 35, 1479-1481 (2010).
  10. R. P. Gollapalli, L. Duan, "Atmospheric timing transfer using a femto-second frequency comb," IEEE Photon. J. 2, 904-910 (2010).
  11. I. Coddington, W. C. Swann, N. R. Newbury, "Coherent multiheterodyne spectroscopy using stabilized optical frequency combs," Phys. Rev. Lett. 100, 013902 (2008).
  12. S. Kray, F. Spöler, M. Först, H. Kurz, "Dual femtosecond laser multiheterodyne optical coherence tomography," Opt. Lett. 33, 2092-2094 (2008).
  13. L. C. Andrews, R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).
  14. N. R. Newbury, W. C. Swann, "Low-noise fiber-laser frequency combs," J. Opt. Soc. Amer. B 24, 1756-1770 (2007).
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  16. B. Edlén, "The refractive index of air," Metrologia 2, 71-80 (1966).
  17. R. S. Lawrence, J. W. Strohbehn, "A survey of clear-air propagation effects relevant to optical communications," Proc. IEEE 58, 1523-1545 (1970).
  18. J. C. Owens, "Optical refractive index of air: Dependence on pressure, temperature and composition," Appl. Opt. 6, 51-58 (1967).
  19. E. Rubiola, R. Boudot, "Phase noise in RF and microwave amplifiers," Proc. IEEE Int. Freq. Control Symp. (2010) pp. 109-111.
  20. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978) pp. 527-535.

2010 (2)

R. P. Gollapalli, L. Duan, "Atmospheric timing transfer using a femto-second frequency comb," IEEE Photon. J. 2, 904-910 (2010).

K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, P. Wolf, "Coherent optical link through the turbulent atmosphere," Opt. Lett. 35, 1479-1481 (2010).

2009 (3)

2008 (5)

S. Kray, F. Spöler, M. Först, H. Kurz, "Dual femtosecond laser multiheterodyne optical coherence tomography," Opt. Lett. 33, 2092-2094 (2008).

I. Coddington, W. C. Swann, N. R. Newbury, "Coherent multiheterodyne spectroscopy using stabilized optical frequency combs," Phys. Rev. Lett. 100, 013902 (2008).

P. A. Williams, W. C. Swann, N. R. Newbury, "High-stability transfer of an optical frequency over long fiber-optic links," J. Opt. Soc. Amer. B 25, 1284-1293 (2008).

M. Musha1, F. Hong, K. Nakagawa, K. Ueda, "Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network," Opt. Exp. 16, 16459-16466 (2008).

J. Kim, J. A. Cox, J. Chen, F. X. Kaertner, "Drift-free femtosecond timing synchronization of remote optical and microwave sources," Nat. Photonics 2, 733-736 (2008).

2007 (2)

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, J. Ye, "Remote transfer of ultrastable frequency references via fiber networks," Rev. Sci. Instrum. 78, 021101 (2007).

N. R. Newbury, W. C. Swann, "Low-noise fiber-laser frequency combs," J. Opt. Soc. Amer. B 24, 1756-1770 (2007).

2004 (1)

1970 (1)

R. S. Lawrence, J. W. Strohbehn, "A survey of clear-air propagation effects relevant to optical communications," Proc. IEEE 58, 1523-1545 (1970).

1967 (1)

1966 (1)

B. Edlén, "The refractive index of air," Metrologia 2, 71-80 (1966).

Appl. Opt. (1)

IEEE Photon. J. (1)

R. P. Gollapalli, L. Duan, "Atmospheric timing transfer using a femto-second frequency comb," IEEE Photon. J. 2, 904-910 (2010).

J. Opt. Soc. Amer. B (1)

P. A. Williams, W. C. Swann, N. R. Newbury, "High-stability transfer of an optical frequency over long fiber-optic links," J. Opt. Soc. Amer. B 25, 1284-1293 (2008).

J. Opt. Soc. Amer. B (1)

N. R. Newbury, W. C. Swann, "Low-noise fiber-laser frequency combs," J. Opt. Soc. Amer. B 24, 1756-1770 (2007).

Metrologia (1)

B. Edlén, "The refractive index of air," Metrologia 2, 71-80 (1966).

Nat. Photonics (1)

J. Kim, J. A. Cox, J. Chen, F. X. Kaertner, "Drift-free femtosecond timing synchronization of remote optical and microwave sources," Nat. Photonics 2, 733-736 (2008).

Opt. Exp. (1)

M. Musha1, F. Hong, K. Nakagawa, K. Ueda, "Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network," Opt. Exp. 16, 16459-16466 (2008).

Opt. Lett. (6)

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, N. R. Newbury, "Coherent multiheterodyne spectroscopy using stabilized optical frequency combs," Phys. Rev. Lett. 100, 013902 (2008).

Proc. IEEE (1)

R. S. Lawrence, J. W. Strohbehn, "A survey of clear-air propagation effects relevant to optical communications," Proc. IEEE 58, 1523-1545 (1970).

Rev. Sci. Instrum. (1)

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, J. Ye, "Remote transfer of ultrastable frequency references via fiber networks," Rev. Sci. Instrum. 78, 021101 (2007).

Other (4)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

L. C. Andrews, R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).

E. Rubiola, R. Boudot, "Phase noise in RF and microwave amplifiers," Proc. IEEE Int. Freq. Control Symp. (2010) pp. 109-111.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978) pp. 527-535.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.