Abstract

We report an experimental investigation on remote transfer of a femtosecond-laser frequency comb through an open atmospheric link. Optical multiheterodyne is used to measure the excess phase noise and the frequency stability of the transferred comb. The dispersion of air is found to have a minimal impact on the multiheterodyne signal, and the effectiveness of the technique to characterize the behaviors of comb lines under the influence of turbulence is theoretically analyzed. Large phase modulation due to the index fluctuation of the air over a 60-m transmission link is found to cause a significant linewidth broadening. Under low-wind conditions, a fractional frequency stability in the order of 10<sup>-14</sup> has been achieved over several minutes with a 1-s averaging time. A comparison of this work with previous tests based on continuous wave (CW) lasers indicates that pulsed lasers can work as well as CW lasers for remote transfer of optical frequency references through the atmosphere.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription