Abstract

We study the efficiency and numerical accuracy of two digital backpropagation schemes for post-compensating SOA-induced nonlinear impairments in the context of coherent receivers for advanced modulated formats. While the classical Runge–Kutta numerical techniques provide almost ideal post-compensation when the receiver sampling time tends to zero, this accuracy diminishes quickly as we approach realistic sampling times. At rates near Nyquist, despite much reduced complexity, our proposed digital filter back propagation technique outperforms Runge–Kutta techniques in terms of root mean square (rms) residual distortion. We quantify rms residual distortion for both methods as sampling time varies. We also examine bit error performance for 16-QAM, as well as the impact of SOA saturation level. We examine robustness to imperfect channel estimation.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription