Abstract

We demonstrate a 2 × 2 silicon-plasmonic router architecture with 320 Gb/s throughput capabilities for optical interconnect applications. The proposed router platform relies on a novel dual-ring Dielectric-Loaded Surface Plasmon Polariton (DLSPP) 2 × 2 switch heterointegrated on a Silicon-on-Insulator (SOI) photonic motherboard that is responsible for traffic multiplexing and header processing functionalities. We present experimental results of a Poly-methyl-methacrylate (PMMA)-loaded dual-resonator DLSPP waveguide structure that uses two racetrack resonators of 5.5 $\mu$m radius and 4 $\mu$m-long straight sections and operates as a passive add/drop filtering element. We derive its frequency-domain transfer function, confirm its add/drop experimental spectral response, and proceed to a circuit-level model for dual-ring DLSPP designs supporting 2 × 2 thermo-optic switch operation. The validity of our circuit-level modeled 2 × 2 thermo-optic switch is verified by means of respective full vectorial three-dimensional Finite Element Method (3D-FEM) simulations. The router setup is completed by means of two 4 × 1 SOI multiplexing circuits, each one employing four cascaded second order micro-ring configurations with 100 GHz spaced resonances. Successful interconnection between the DLSPP switching matrix and the SOI circuitry is performed through a butt-coupling design that, as shown via 3D-FEM analysis, allows for small coupling losses of as low as 2.6 dB. The final router architecture is evaluated through a co-operative simulation environment, demonstrating successful 2 × 2 routing for two incoming 4-wavelength Non-Return-to-Zero (NRZ) optical packet streams with 40 Gb/s line-rates.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. D. A. B. Miller, "Optical interconnects," Proc. Opt. Fiber Commun. Conf. (2010).
  2. P. K. Pepeljugoski, "Low-power and high-density optical interconnects for future supercomputers," Proc. Opt. Fiber Commun. Conf. (2010).
  3. R. Luijten, R. Grzybowski, "The osmosis optical packet switch for supercomputers," Proc. Opt. Fiber Commun. Conf. (2009).
  4. W. Bogaerts, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightw. Technol. 23, 401-412 (2005).
  5. B. Jalali, "Teaching silicon new tricks," Nature Photon. 1, 193-195 (2007).
  6. A. Liu, "Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform," IEEE J. Sel. Topics Quantum Electron 16, 23-32 (2010).
  7. A. Alduino, "Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers," Proc. Integr. Photon. Res., Silicon and Nanophoton. (2010).
  8. F. E. Doany, B. G. Lee, C. L. Schow, C. K. Tsang, C. Baks, Y. Kwark, R. John, J. U. Knickerbocker, J. A. Kash, "Terabit/s-class 24-channel bidirectional optical transceiver module based on TSV Si carrier for board-level interconnects," Proc. Electron. Compon. Technol. Conf. (2010) pp. 58-65.
  9. A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, K. Bergman, "Broadband operation of nanophotonic router for silicon photonic networks-on-chip," IEEE Photon. Technol. Lett. 22, 926-928 (2010).
  10. A. Shacham, K. Bergman, L. P. Carloni, "Photonic networks-on-chip for future generations of chip multiprocessors," IEEE Trans. Comput. 57, 1246-1260 (2008).
  11. J. Chan, G. Hendry, A. Biberman, K. Bergman, "Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis," J. Lightw. Technol. 28, 1305-1315 (2010).
  12. D. Vantrease, "Corona: System implications of emerging nanophotonic technology," Proc. 35th Int. Symp. Comput. Arch. (2008) pp. 153-164.
  13. R. Morris, A. K. Kodi, "Exploring the design of 64- and 256-core power efficient nanophotonic interconnect," IEEE J. Sel. Topics Quantum Electron. 16, 1386-1393 (2010).
  14. R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, "Plasmonics: The next chip-scale technology," Materials Today 9, 20-27 (2006).
  15. H. A. Atwater, "The promise of plasmonics," Sci. Am. Mag. 296, 56-63 (2007).
  16. D. K. Gramotnev, S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nature Nanophotonics 4, 83-91 (2010).
  17. B. Steinberger, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, (2006) Art. ID 094104.
  18. T. Holmgaard, S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Phys. Rev. B 75, (2007) Art. ID 245405.
  19. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, "Dielectric-loaded plasmonic waveguide-ring resonators," Opt. Exp. 17, 2968-2975 (2009).
  20. Z. Chen, "Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides," Opt. Lett. 34, 310-312 (2009).
  21. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, "Design and characterization of dielectric-loaded plasmonic directional couplers," J. Lightw. Technol. 27, 5521-5528 (2009).
  22. O. Tsilipakos, T. V. Yioultsis, E. E. Kriezis, "Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides," J. Appl. Phys. 106, (2009) Art. ID 093109.
  23. J. Gosciniak, "Thermo-optic control of dielectric-loaded plasmonic waveguide components," Opt. Exp. 18, 1207-1216 (2010).
  24. A. Dereux, "Parametric study of dielectric loaded surface plasmon polariton add-drop filters for hybrid silicon/plasmonic optical circuitry," Proc. SPIE Photon. West (2011).
  25. O. Tsilipakos, E. E. Kriezis, S. I. Bozhevolnyi, "Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides," J. Appl. Phys. 109, (2011) Art. ID 073111.
  26. J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, A. Dereux, "Fiber-coupled dielectric loaded plasmonic waveguides," Opt. Exp. 18, 5314-5319 (2010).
  27. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, H. A. Atwater, "Efficient coupling between dielectric loaded plasmonic and silicon photonic waveguides," Nano Lett. 10, 4851-4857 (2010).
  28. A. Kumar, J. Gosciniak, T. B. Andersen, L. Markey, A. Dereux, S. I. Bozhevolnyi, "Power monitoring in dielectric-loaded surface plasmon-polariton waveguides," Opt. Exp. 19, 2972-2978 (2011).
  29. J. T. Kim, "Chip to chip optical interconnect using gold long-range surface plasmon polariton waveguides," Optics Exp. 16, 13133-13138 (2008).
  30. T. Holmgaard, J. Gosciniak, S. I. Bozhevolnyi, "Long-range dielectric-loaded surface plasmon-polariton wavelengths," Opt. Exp. 18, 23009-23015 (2010).
  31. O. Liboiron-Ladouceur, "The data vortex optical packet switched interconnection network," J. Lightw. Technol. 26, 1777-1789 (2008).
  32. W. Bogaerts, P. Dumon, D. V. Thourhout, R. Baets, "Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides," Opt. Lett. 32, 2801-2803 (2007).
  33. P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
  34. T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).
  35. G. Gagnon, N. Lahoud, G. Mattiussi, P. Berini, "Thermally activated variable attenuation of long-range surface plasmon-polariton waves," J. Lightw. Technol. 24, 4391-4402 (2006).
  36. M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, Y. Liu, "Compact four-channel reconfigurable optical add-drop multiplexer using silicon photonic wire," Opt. Commun. 282, 3477-3480 (2009).
  37. T. Barwicz, "Reconfigurable silicon photonic circuits for telecommunication applications," Proc. SPIE (2008) pp. 68720Z-1-68720Z-12.
  38. E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, A. Driessen, "Reconfigurable optical add-drop multiplexer using microring resonators," IEEE Photon. Technol. Lett. 17, 2358-2360 (2005).
  39. P. Dong, "Low power and compact reconfigurable multiplexing devices based on silicon microring resonators," Opt. Exp. 18, 9852-9858 (2010).
  40. S. Xiao, M. H. Khan, H. Shen, M. Qi, "Multiple-channel silicon micro-resonator based filters for WDM applications," Opt. Exp. 15, 7489-7498 (2007).
  41. P. Saeung, P. P. Yupapin, "Generalized analysis of multiple ring resonator filters: Modeling by using graphical approach," Optik-Int. J. Light Electron Opt. 119, 465-472 (2008).
  42. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson, "Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC)," Opt. Exp. 16, 15915-15922 (2008).

2011 (2)

O. Tsilipakos, E. E. Kriezis, S. I. Bozhevolnyi, "Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides," J. Appl. Phys. 109, (2011) Art. ID 073111.

A. Kumar, J. Gosciniak, T. B. Andersen, L. Markey, A. Dereux, S. I. Bozhevolnyi, "Power monitoring in dielectric-loaded surface plasmon-polariton waveguides," Opt. Exp. 19, 2972-2978 (2011).

2010 (10)

J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, A. Dereux, "Fiber-coupled dielectric loaded plasmonic waveguides," Opt. Exp. 18, 5314-5319 (2010).

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, H. A. Atwater, "Efficient coupling between dielectric loaded plasmonic and silicon photonic waveguides," Nano Lett. 10, 4851-4857 (2010).

A. Liu, "Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform," IEEE J. Sel. Topics Quantum Electron 16, 23-32 (2010).

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, K. Bergman, "Broadband operation of nanophotonic router for silicon photonic networks-on-chip," IEEE Photon. Technol. Lett. 22, 926-928 (2010).

J. Chan, G. Hendry, A. Biberman, K. Bergman, "Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis," J. Lightw. Technol. 28, 1305-1315 (2010).

R. Morris, A. K. Kodi, "Exploring the design of 64- and 256-core power efficient nanophotonic interconnect," IEEE J. Sel. Topics Quantum Electron. 16, 1386-1393 (2010).

D. K. Gramotnev, S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nature Nanophotonics 4, 83-91 (2010).

T. Holmgaard, J. Gosciniak, S. I. Bozhevolnyi, "Long-range dielectric-loaded surface plasmon-polariton wavelengths," Opt. Exp. 18, 23009-23015 (2010).

J. Gosciniak, "Thermo-optic control of dielectric-loaded plasmonic waveguide components," Opt. Exp. 18, 1207-1216 (2010).

P. Dong, "Low power and compact reconfigurable multiplexing devices based on silicon microring resonators," Opt. Exp. 18, 9852-9858 (2010).

2009 (5)

M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, Y. Liu, "Compact four-channel reconfigurable optical add-drop multiplexer using silicon photonic wire," Opt. Commun. 282, 3477-3480 (2009).

Z. Chen, "Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides," Opt. Lett. 34, 310-312 (2009).

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, "Dielectric-loaded plasmonic waveguide-ring resonators," Opt. Exp. 17, 2968-2975 (2009).

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, "Design and characterization of dielectric-loaded plasmonic directional couplers," J. Lightw. Technol. 27, 5521-5528 (2009).

O. Tsilipakos, T. V. Yioultsis, E. E. Kriezis, "Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides," J. Appl. Phys. 106, (2009) Art. ID 093109.

2008 (5)

J. T. Kim, "Chip to chip optical interconnect using gold long-range surface plasmon polariton waveguides," Optics Exp. 16, 13133-13138 (2008).

A. Shacham, K. Bergman, L. P. Carloni, "Photonic networks-on-chip for future generations of chip multiprocessors," IEEE Trans. Comput. 57, 1246-1260 (2008).

P. Saeung, P. P. Yupapin, "Generalized analysis of multiple ring resonator filters: Modeling by using graphical approach," Optik-Int. J. Light Electron Opt. 119, 465-472 (2008).

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson, "Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC)," Opt. Exp. 16, 15915-15922 (2008).

O. Liboiron-Ladouceur, "The data vortex optical packet switched interconnection network," J. Lightw. Technol. 26, 1777-1789 (2008).

2007 (5)

S. Xiao, M. H. Khan, H. Shen, M. Qi, "Multiple-channel silicon micro-resonator based filters for WDM applications," Opt. Exp. 15, 7489-7498 (2007).

W. Bogaerts, P. Dumon, D. V. Thourhout, R. Baets, "Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides," Opt. Lett. 32, 2801-2803 (2007).

B. Jalali, "Teaching silicon new tricks," Nature Photon. 1, 193-195 (2007).

H. A. Atwater, "The promise of plasmonics," Sci. Am. Mag. 296, 56-63 (2007).

T. Holmgaard, S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Phys. Rev. B 75, (2007) Art. ID 245405.

2006 (3)

B. Steinberger, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, (2006) Art. ID 094104.

R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, "Plasmonics: The next chip-scale technology," Materials Today 9, 20-27 (2006).

G. Gagnon, N. Lahoud, G. Mattiussi, P. Berini, "Thermally activated variable attenuation of long-range surface plasmon-polariton waves," J. Lightw. Technol. 24, 4391-4402 (2006).

2005 (2)

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, A. Driessen, "Reconfigurable optical add-drop multiplexer using microring resonators," IEEE Photon. Technol. Lett. 17, 2358-2360 (2005).

W. Bogaerts, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightw. Technol. 23, 401-412 (2005).

2004 (1)

T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).

1972 (1)

P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

Appl. Phys. Lett. (2)

B. Steinberger, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, (2006) Art. ID 094104.

T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).

IEEE J. Sel. Topics Quantum Electron (1)

A. Liu, "Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform," IEEE J. Sel. Topics Quantum Electron 16, 23-32 (2010).

IEEE J. Sel. Topics Quantum Electron. (1)

R. Morris, A. K. Kodi, "Exploring the design of 64- and 256-core power efficient nanophotonic interconnect," IEEE J. Sel. Topics Quantum Electron. 16, 1386-1393 (2010).

IEEE Photon. Technol. Lett. (2)

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, K. Bergman, "Broadband operation of nanophotonic router for silicon photonic networks-on-chip," IEEE Photon. Technol. Lett. 22, 926-928 (2010).

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, A. Driessen, "Reconfigurable optical add-drop multiplexer using microring resonators," IEEE Photon. Technol. Lett. 17, 2358-2360 (2005).

IEEE Trans. Comput. (1)

A. Shacham, K. Bergman, L. P. Carloni, "Photonic networks-on-chip for future generations of chip multiprocessors," IEEE Trans. Comput. 57, 1246-1260 (2008).

J. Appl. Phys. (2)

O. Tsilipakos, T. V. Yioultsis, E. E. Kriezis, "Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides," J. Appl. Phys. 106, (2009) Art. ID 093109.

O. Tsilipakos, E. E. Kriezis, S. I. Bozhevolnyi, "Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides," J. Appl. Phys. 109, (2011) Art. ID 073111.

J. Lightw. Technol. (5)

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, "Design and characterization of dielectric-loaded plasmonic directional couplers," J. Lightw. Technol. 27, 5521-5528 (2009).

G. Gagnon, N. Lahoud, G. Mattiussi, P. Berini, "Thermally activated variable attenuation of long-range surface plasmon-polariton waves," J. Lightw. Technol. 24, 4391-4402 (2006).

J. Chan, G. Hendry, A. Biberman, K. Bergman, "Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis," J. Lightw. Technol. 28, 1305-1315 (2010).

W. Bogaerts, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightw. Technol. 23, 401-412 (2005).

O. Liboiron-Ladouceur, "The data vortex optical packet switched interconnection network," J. Lightw. Technol. 26, 1777-1789 (2008).

Materials Today (1)

R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, "Plasmonics: The next chip-scale technology," Materials Today 9, 20-27 (2006).

Nano Lett. (1)

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, H. A. Atwater, "Efficient coupling between dielectric loaded plasmonic and silicon photonic waveguides," Nano Lett. 10, 4851-4857 (2010).

Nature Nanophotonics (1)

D. K. Gramotnev, S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nature Nanophotonics 4, 83-91 (2010).

Nature Photon. (1)

B. Jalali, "Teaching silicon new tricks," Nature Photon. 1, 193-195 (2007).

Opt. Commun. (1)

M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, Y. Liu, "Compact four-channel reconfigurable optical add-drop multiplexer using silicon photonic wire," Opt. Commun. 282, 3477-3480 (2009).

Opt. Exp. (8)

P. Dong, "Low power and compact reconfigurable multiplexing devices based on silicon microring resonators," Opt. Exp. 18, 9852-9858 (2010).

S. Xiao, M. H. Khan, H. Shen, M. Qi, "Multiple-channel silicon micro-resonator based filters for WDM applications," Opt. Exp. 15, 7489-7498 (2007).

A. Kumar, J. Gosciniak, T. B. Andersen, L. Markey, A. Dereux, S. I. Bozhevolnyi, "Power monitoring in dielectric-loaded surface plasmon-polariton waveguides," Opt. Exp. 19, 2972-2978 (2011).

T. Holmgaard, J. Gosciniak, S. I. Bozhevolnyi, "Long-range dielectric-loaded surface plasmon-polariton wavelengths," Opt. Exp. 18, 23009-23015 (2010).

J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, A. Dereux, "Fiber-coupled dielectric loaded plasmonic waveguides," Opt. Exp. 18, 5314-5319 (2010).

J. Gosciniak, "Thermo-optic control of dielectric-loaded plasmonic waveguide components," Opt. Exp. 18, 1207-1216 (2010).

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, "Dielectric-loaded plasmonic waveguide-ring resonators," Opt. Exp. 17, 2968-2975 (2009).

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson, "Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC)," Opt. Exp. 16, 15915-15922 (2008).

Opt. Lett. (2)

Optics Exp. (1)

J. T. Kim, "Chip to chip optical interconnect using gold long-range surface plasmon polariton waveguides," Optics Exp. 16, 13133-13138 (2008).

Optik-Int. J. Light Electron Opt. (1)

P. Saeung, P. P. Yupapin, "Generalized analysis of multiple ring resonator filters: Modeling by using graphical approach," Optik-Int. J. Light Electron Opt. 119, 465-472 (2008).

Phys. Rev. B (2)

T. Holmgaard, S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Phys. Rev. B 75, (2007) Art. ID 245405.

P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

Sci. Am. Mag. (1)

H. A. Atwater, "The promise of plasmonics," Sci. Am. Mag. 296, 56-63 (2007).

Other (8)

A. Alduino, "Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers," Proc. Integr. Photon. Res., Silicon and Nanophoton. (2010).

F. E. Doany, B. G. Lee, C. L. Schow, C. K. Tsang, C. Baks, Y. Kwark, R. John, J. U. Knickerbocker, J. A. Kash, "Terabit/s-class 24-channel bidirectional optical transceiver module based on TSV Si carrier for board-level interconnects," Proc. Electron. Compon. Technol. Conf. (2010) pp. 58-65.

D. A. B. Miller, "Optical interconnects," Proc. Opt. Fiber Commun. Conf. (2010).

P. K. Pepeljugoski, "Low-power and high-density optical interconnects for future supercomputers," Proc. Opt. Fiber Commun. Conf. (2010).

R. Luijten, R. Grzybowski, "The osmosis optical packet switch for supercomputers," Proc. Opt. Fiber Commun. Conf. (2009).

D. Vantrease, "Corona: System implications of emerging nanophotonic technology," Proc. 35th Int. Symp. Comput. Arch. (2008) pp. 153-164.

T. Barwicz, "Reconfigurable silicon photonic circuits for telecommunication applications," Proc. SPIE (2008) pp. 68720Z-1-68720Z-12.

A. Dereux, "Parametric study of dielectric loaded surface plasmon polariton add-drop filters for hybrid silicon/plasmonic optical circuitry," Proc. SPIE Photon. West (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.