Abstract

A Fiber Optic Distributed Differential Displacement Sensor (FODDDS) that is temperature insensitive is modelled and experimentally verified to determine shape. Created using a steel tape, 9/125 <i>μ</i>m single-mode fiber, and adhesive, the FODDDS can be used to determine the shape or displacement of any object to which it is attached. The sensitivity of the FODDDS, for the substrate thickness used in this experiment, is specified as a maximum measurable radius of curvature of 103 m. The error of the sensor is examined and the sources of this error are examined. The FODDDS is designed around a Brillouin Optical Time-Domain Analysis system, but is compatible with both correlation and frequency domain based systems.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. M. DeMerchant, A. Brown, X. Bao, T. Bremner, "Brillouin scattering based strain sensing," Proc. SPIE 3670, 352-358 (1999).
  2. A. W. Brown, M. D. DeMerchant, X. Bao, T. W. Bremner, "Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method," J. Lightw. Technol. 17, 1179-1183 (1999).
  3. M. DeMerchant, A. Brown, X. Bao, T. Bremner, "Automated system for distributed sensing," Proc. SPIE 3330, 315-322 (1999).
  4. R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, L. Zeni, "All frequency domain distributed fiber-optic Brillouin sensing," IEEE J. Sens. 3, 36-43 (2003).
  5. K. Hotate, M. Tanaka, "Distributed fiber Brillouin strain sensing with 1 cm spatial resolution by correlation-based continuous wave technique," Proc. SPIE 4185, 647-650 (2000).
  6. K. Song, Z. He, K. Hotate, "Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis," Opt. Lett. 31, 2526-2528 (2006).
  7. K. Y. Song, S. Chin, N. Primerov, L. Thevenaz, "Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating," J. Lightw. Technol. 28, 2062-2067 (2010).
  8. M. T. V. Wylie, A. W. Brown, B. G. Colpitts, "Fiber optic distributed differential displacement sensor," Proc. SPIE, OFS-21 (2011).
  9. R. G. Duncan, M. T. Raum, "Characterization of a fiber-optic shape and position sensor," Smart Struct. Mater. 2006: Smart Sensor Monitoring Syst. Appl. 6167, 616-704 (2006).
  10. L. Brillouin, "Scattering of light," Comptes Rendus Hebdomadaires Des Seances De L'Academie Des Sciences 158, 1881-1884 (1914).
  11. V. Lecoeuche, D. Webb, C. Pannell, D. Jackson, "Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time," Opt. Lett. 25, 156-8 (2000).
  12. V. A. Saetchnikov, E. A. Chernyavskaya, T. P. Yanukovich, "Three wave model of distributed temperature and strain optical fiber sensors," Proc. SPIE (2001) pp. 149-158.
  13. T. P. Yanukovich, "Numerical model of three-wave Brillouin scattering in an optical fiber," Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences 69, 518-522 (2002).
  14. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, 2002).
  15. K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, "Coherent self-heterodyne Brillouin otdr for measurement of Brillouin frequency shift distribution in optical fibers," J. Lightw. Technol. 12, 730-736 (1994).
  16. H. Izumita, T. Sato, M. Tateda, Y. Koyamada, "Brillouin otdr employing optical frequency shifter using side-band generation technique with high-speed ln phase-modulator," IEEE Photon. Technol. Lett. 8, 1674-1676 (1996).
  17. A. Brown, B. Colpitts, K. Brown, "Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution," J. Lightw. Technol. 25, 381-6 (2007).
  18. S.-B. Cho, J.-J. Lee, I.-B. Kwon, "Strain event detection using a double-pulse technique of a Brillouin scattering-based distributed optical fiber sensor," Opt. Exp. 12, 4339-4346 (2004).
  19. W. Li, X. Bao, Y. Li, L. Chen, "Differential pulse-width pair BOTDA for high spatial resolution sensing," Opt. Exp. 16, 21 616-21 625 (2008).
  20. T. Sperber, A. Eyal, M. Tur, L. Thvnaz, "High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing," Opt. Exp. 18, 8671-8679 (2010).
  21. A. Fellay, L. Thévenez, M. Facchini, M. Niklès, P. Robert, "Distributed sensing using stimulated Brillouin scattering: Towards ultimate resolution," Optical Fiber Sens. OWD3 (1997).
  22. S. A. V. G. Ferrier, X. Bao, L. Chen, "Effect of the finite extinction ratio of an electro-optic modulator on the performance of distributed probe-pump Brillouin sensor systems," Opt. Lett. 28, 1418-1420 (2003).
  23. S. Afshar, G. Ferrier, X. Bao, L. Chen, "Impact of EOM extinction ratio on the Brillouin frequency measurement of distributed fiber optic sensors," Proc. SPIE 5260, 519-522 (2003).

2010 (2)

K. Y. Song, S. Chin, N. Primerov, L. Thevenaz, "Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating," J. Lightw. Technol. 28, 2062-2067 (2010).

T. Sperber, A. Eyal, M. Tur, L. Thvnaz, "High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing," Opt. Exp. 18, 8671-8679 (2010).

2008 (1)

W. Li, X. Bao, Y. Li, L. Chen, "Differential pulse-width pair BOTDA for high spatial resolution sensing," Opt. Exp. 16, 21 616-21 625 (2008).

2007 (1)

A. Brown, B. Colpitts, K. Brown, "Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution," J. Lightw. Technol. 25, 381-6 (2007).

2006 (2)

R. G. Duncan, M. T. Raum, "Characterization of a fiber-optic shape and position sensor," Smart Struct. Mater. 2006: Smart Sensor Monitoring Syst. Appl. 6167, 616-704 (2006).

K. Song, Z. He, K. Hotate, "Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis," Opt. Lett. 31, 2526-2528 (2006).

2004 (1)

S.-B. Cho, J.-J. Lee, I.-B. Kwon, "Strain event detection using a double-pulse technique of a Brillouin scattering-based distributed optical fiber sensor," Opt. Exp. 12, 4339-4346 (2004).

2003 (3)

R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, L. Zeni, "All frequency domain distributed fiber-optic Brillouin sensing," IEEE J. Sens. 3, 36-43 (2003).

S. A. V. G. Ferrier, X. Bao, L. Chen, "Effect of the finite extinction ratio of an electro-optic modulator on the performance of distributed probe-pump Brillouin sensor systems," Opt. Lett. 28, 1418-1420 (2003).

S. Afshar, G. Ferrier, X. Bao, L. Chen, "Impact of EOM extinction ratio on the Brillouin frequency measurement of distributed fiber optic sensors," Proc. SPIE 5260, 519-522 (2003).

2002 (1)

T. P. Yanukovich, "Numerical model of three-wave Brillouin scattering in an optical fiber," Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences 69, 518-522 (2002).

2000 (2)

K. Hotate, M. Tanaka, "Distributed fiber Brillouin strain sensing with 1 cm spatial resolution by correlation-based continuous wave technique," Proc. SPIE 4185, 647-650 (2000).

V. Lecoeuche, D. Webb, C. Pannell, D. Jackson, "Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time," Opt. Lett. 25, 156-8 (2000).

1999 (3)

M. DeMerchant, A. Brown, X. Bao, T. Bremner, "Brillouin scattering based strain sensing," Proc. SPIE 3670, 352-358 (1999).

A. W. Brown, M. D. DeMerchant, X. Bao, T. W. Bremner, "Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method," J. Lightw. Technol. 17, 1179-1183 (1999).

M. DeMerchant, A. Brown, X. Bao, T. Bremner, "Automated system for distributed sensing," Proc. SPIE 3330, 315-322 (1999).

1997 (1)

A. Fellay, L. Thévenez, M. Facchini, M. Niklès, P. Robert, "Distributed sensing using stimulated Brillouin scattering: Towards ultimate resolution," Optical Fiber Sens. OWD3 (1997).

1996 (1)

H. Izumita, T. Sato, M. Tateda, Y. Koyamada, "Brillouin otdr employing optical frequency shifter using side-band generation technique with high-speed ln phase-modulator," IEEE Photon. Technol. Lett. 8, 1674-1676 (1996).

1994 (1)

K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, "Coherent self-heterodyne Brillouin otdr for measurement of Brillouin frequency shift distribution in optical fibers," J. Lightw. Technol. 12, 730-736 (1994).

1914 (1)

L. Brillouin, "Scattering of light," Comptes Rendus Hebdomadaires Des Seances De L'Academie Des Sciences 158, 1881-1884 (1914).

Comptes Rendus Hebdomadaires Des Seances De L'Academie Des Sciences (1)

L. Brillouin, "Scattering of light," Comptes Rendus Hebdomadaires Des Seances De L'Academie Des Sciences 158, 1881-1884 (1914).

T. P. Yanukovich, "Numerical model of three-wave Brillouin scattering in an optical fiber," Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences 69, 518-522 (2002).

IEEE J. Sens. (1)

R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, L. Zeni, "All frequency domain distributed fiber-optic Brillouin sensing," IEEE J. Sens. 3, 36-43 (2003).

IEEE Photon. Technol. Lett. (1)

H. Izumita, T. Sato, M. Tateda, Y. Koyamada, "Brillouin otdr employing optical frequency shifter using side-band generation technique with high-speed ln phase-modulator," IEEE Photon. Technol. Lett. 8, 1674-1676 (1996).

J. Lightw. Technol. (4)

A. Brown, B. Colpitts, K. Brown, "Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution," J. Lightw. Technol. 25, 381-6 (2007).

A. W. Brown, M. D. DeMerchant, X. Bao, T. W. Bremner, "Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method," J. Lightw. Technol. 17, 1179-1183 (1999).

K. Y. Song, S. Chin, N. Primerov, L. Thevenaz, "Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating," J. Lightw. Technol. 28, 2062-2067 (2010).

K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, "Coherent self-heterodyne Brillouin otdr for measurement of Brillouin frequency shift distribution in optical fibers," J. Lightw. Technol. 12, 730-736 (1994).

Opt. Exp. (3)

S.-B. Cho, J.-J. Lee, I.-B. Kwon, "Strain event detection using a double-pulse technique of a Brillouin scattering-based distributed optical fiber sensor," Opt. Exp. 12, 4339-4346 (2004).

W. Li, X. Bao, Y. Li, L. Chen, "Differential pulse-width pair BOTDA for high spatial resolution sensing," Opt. Exp. 16, 21 616-21 625 (2008).

T. Sperber, A. Eyal, M. Tur, L. Thvnaz, "High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing," Opt. Exp. 18, 8671-8679 (2010).

Opt. Lett. (3)

Optical Fiber Sens. (1)

A. Fellay, L. Thévenez, M. Facchini, M. Niklès, P. Robert, "Distributed sensing using stimulated Brillouin scattering: Towards ultimate resolution," Optical Fiber Sens. OWD3 (1997).

Proc. SPIE (4)

M. DeMerchant, A. Brown, X. Bao, T. Bremner, "Brillouin scattering based strain sensing," Proc. SPIE 3670, 352-358 (1999).

M. DeMerchant, A. Brown, X. Bao, T. Bremner, "Automated system for distributed sensing," Proc. SPIE 3330, 315-322 (1999).

K. Hotate, M. Tanaka, "Distributed fiber Brillouin strain sensing with 1 cm spatial resolution by correlation-based continuous wave technique," Proc. SPIE 4185, 647-650 (2000).

S. Afshar, G. Ferrier, X. Bao, L. Chen, "Impact of EOM extinction ratio on the Brillouin frequency measurement of distributed fiber optic sensors," Proc. SPIE 5260, 519-522 (2003).

Smart Struct. Mater. 2006: Smart Sensor Monitoring Syst. Appl. (1)

R. G. Duncan, M. T. Raum, "Characterization of a fiber-optic shape and position sensor," Smart Struct. Mater. 2006: Smart Sensor Monitoring Syst. Appl. 6167, 616-704 (2006).

Other (3)

M. T. V. Wylie, A. W. Brown, B. G. Colpitts, "Fiber optic distributed differential displacement sensor," Proc. SPIE, OFS-21 (2011).

V. A. Saetchnikov, E. A. Chernyavskaya, T. P. Yanukovich, "Three wave model of distributed temperature and strain optical fiber sensors," Proc. SPIE (2001) pp. 149-158.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.