Abstract

This paper describes a novel micromechanical optical switch that has simple and easy-to-manufacture components comprising a few flat substrates, including a flat electrode array and S-shaped deformable thin-film mirrors, the number of which is determined by the number of incident light rays. These components can be easily fabricated without using a deep reactive ion-etching process. In the proposed switch, a light ray reflected by the thin-film mirror between the substrates passes through one of the substrates. Thus, the optical switch can be used not only for communication networks but also for display systems and scanners. As a common core unit of an optical switch for these applications, prototype core switches were fabricated using the microelectromechanical system fabrication technique, and their characteristics were evaluated. One of the prototype core switches was driven at an applied voltage of 130 V. The switching time was shorter than 2 ms.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription