Abstract

This paper describes a novel micromechanical optical switch that has simple and easy-to-manufacture components comprising a few flat substrates, including a flat electrode array and S-shaped deformable thin-film mirrors, the number of which is determined by the number of incident light rays. These components can be easily fabricated without using a deep reactive ion-etching process. In the proposed switch, a light ray reflected by the thin-film mirror between the substrates passes through one of the substrates. Thus, the optical switch can be used not only for communication networks but also for display systems and scanners. As a common core unit of an optical switch for these applications, prototype core switches were fabricated using the microelectromechanical system fabrication technique, and their characteristics were evaluated. One of the prototype core switches was driven at an applied voltage of 130 V. The switching time was shorter than 2 ms.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. H. Toshiyoshi, H. Fujita, "Electrostatic micro torsion mirrors for an optical switch matrix," J. Microelectromech. Syst. 5, 231-237 (1996).
  2. S. Lee, L. Huang, C. Kim, M. C. Wu, "Fiber-optic switches based on MEMS vertical torsion mirrors," J. Lightw. Technol. 17, 7-13 (1999).
  3. C. Ji, Y. Kim, "Electromagnetic micromirror array with single-crystal silicon mirror plate and aluminum spring," J. Lightw. Technol. 21, 584-590 (2003).
  4. L. Y. Lin, E. L. Goldstein, R. W. Tkach, "Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects," IEEE Photon. Technol. Lett. 10, 525-527 (1998).
  5. R. A. Miller, Y. Tai, G. Xu, J. Bartha, F. Lin, "An electromagnetic MEMS 2$\,\times\,$2 fiber optic bypass switch," Proc. Transducers'97 (1997) pp. 89-92.
  6. C. Marxer, N. F. de Rooij, "Micro-opto-mechanical 2$\,{\times}\,$2 switch for single-mode fibers based on plasma-etched silicon mirror and electrostatic actuation," J. Lightw. Technol. 17, 2-6 (1999).
  7. C. Jia, J. Zhou, W. Dong, W. Chen, "Design and fabrication of silicon-based 8$\,{\times}\,$8 MEMS optical switch array," Microelectron. J. 40, 83-86 (2009).
  8. P. Helin, M. Mita, T. Bourouina, G. Reyne, H. Fujita, "Self-aligned micromachining process for large-scale, free-space optical cross-connects," J. Lightw. Technol. 18, 1785-1791 (2000).
  9. D. S. Greywall, P. A. Busch, F. Pardo, D. W. Carr, G. Bogart, H. T. Soh, "Crystalline silicon tilting mirrors for optical cross-connect switches," J. Microelectromech. Syst. 12, 708-712 (2003).
  10. J. J. Bernstein, W. O. Taylor, J. D. Brazzle, C. J. Corcoran, G. Kirkos, J. E. Odhner, A. Pareek, M. Waelti, M. Zai, "Electromagnetically actuated mirror arrays for use in 3-D optical switching applications," J. Microelectromech. Syst. 13, 526-535 (2004).
  11. R. R. A. Syms, "Scaling laws for MEMS mirror-rotation optical cross connect switches," J. Lightw. Technol. 20, 1084-1095 (2002).
  12. M. Makihara, M. Sato, F. Shimokawa, Y. Nishida, "Micromechanical optical switches based on thermocapillary integrated in waveguide substrate," J. Lightw. Technol. 17, 14-18 (1999).
  13. T. Sakata, H. Togo, M. Makihara, F. Shimokawa, K. Kaneko, "Improvement of switching time in a thermocapillary optical switch," J. Lightw. Technol. 19, 14-18 (2001).
  14. M. Sato, "Electrocapillarity optical switch," IEICE Trans. Commun. E77-B, 197-203 (1994).
  15. T. Kanai, A. Nagayama, S. Inagaki, K. Sasakura, "Automated optical main-distributing-frame system," J. Lightw. Technol. 12, 1986-1992 (1994).
  16. Y. Hakamata, T. Yoshizawa, T. Kodaira, "A 1.3 mm single-mode 2$\,{\times}\,$2 liquid crystal optical switch," IEICE Trans. Commun. E77-B, 1249-1255 (1994).
  17. F. Chollet, M. de Labachelerie, H. Fujita, "Compact evanescent optical switch and actuator with electromechanical actuation," IEEE J. Sel. Topics Quantum Electron. 5, 52-59 (1999).
  18. Y. Yang, B. Liao, "A novel 4$\,{\times}\,$4 optical switch using an anisotropically etched micromirror array and a bistable mini-actuator array," IEEE Photon. Technol. Lett. 21, 115-117 (2009).
  19. D. W. Monk, R. O. Gale, "The digital micromirror device for projection display," Microelectron. Eng. 27, 489-493 (1995).
  20. M. Selbrede, B. Yost, "Time multiplexed optical shutter (TMOS) display technology for avionics platforms," Proc. SPIE (2006) pp. 62251B.
  21. T. Oguchi, M. Hayase, T. Hatsuzawa, "Electrostatically driven micro-optical switching device based on interference of light and evanescent coupling," Proc. SPIE (2002) pp. 213-220.
  22. C. W. Mclaughlin, "Progress in projection and large-area displays," Proc. IEEE 90, 521-532 (2002).
  23. K. Sato, M. Shikida, "An electrostatically actuated gas valve with and S-shaped film element," J. Micromech. Microeng. 205-209 (1994).

2009

C. Jia, J. Zhou, W. Dong, W. Chen, "Design and fabrication of silicon-based 8$\,{\times}\,$8 MEMS optical switch array," Microelectron. J. 40, 83-86 (2009).

Y. Yang, B. Liao, "A novel 4$\,{\times}\,$4 optical switch using an anisotropically etched micromirror array and a bistable mini-actuator array," IEEE Photon. Technol. Lett. 21, 115-117 (2009).

2004

J. J. Bernstein, W. O. Taylor, J. D. Brazzle, C. J. Corcoran, G. Kirkos, J. E. Odhner, A. Pareek, M. Waelti, M. Zai, "Electromagnetically actuated mirror arrays for use in 3-D optical switching applications," J. Microelectromech. Syst. 13, 526-535 (2004).

2003

D. S. Greywall, P. A. Busch, F. Pardo, D. W. Carr, G. Bogart, H. T. Soh, "Crystalline silicon tilting mirrors for optical cross-connect switches," J. Microelectromech. Syst. 12, 708-712 (2003).

C. Ji, Y. Kim, "Electromagnetic micromirror array with single-crystal silicon mirror plate and aluminum spring," J. Lightw. Technol. 21, 584-590 (2003).

2002

R. R. A. Syms, "Scaling laws for MEMS mirror-rotation optical cross connect switches," J. Lightw. Technol. 20, 1084-1095 (2002).

C. W. Mclaughlin, "Progress in projection and large-area displays," Proc. IEEE 90, 521-532 (2002).

2001

T. Sakata, H. Togo, M. Makihara, F. Shimokawa, K. Kaneko, "Improvement of switching time in a thermocapillary optical switch," J. Lightw. Technol. 19, 14-18 (2001).

2000

P. Helin, M. Mita, T. Bourouina, G. Reyne, H. Fujita, "Self-aligned micromachining process for large-scale, free-space optical cross-connects," J. Lightw. Technol. 18, 1785-1791 (2000).

1999

C. Marxer, N. F. de Rooij, "Micro-opto-mechanical 2$\,{\times}\,$2 switch for single-mode fibers based on plasma-etched silicon mirror and electrostatic actuation," J. Lightw. Technol. 17, 2-6 (1999).

S. Lee, L. Huang, C. Kim, M. C. Wu, "Fiber-optic switches based on MEMS vertical torsion mirrors," J. Lightw. Technol. 17, 7-13 (1999).

M. Makihara, M. Sato, F. Shimokawa, Y. Nishida, "Micromechanical optical switches based on thermocapillary integrated in waveguide substrate," J. Lightw. Technol. 17, 14-18 (1999).

F. Chollet, M. de Labachelerie, H. Fujita, "Compact evanescent optical switch and actuator with electromechanical actuation," IEEE J. Sel. Topics Quantum Electron. 5, 52-59 (1999).

1998

L. Y. Lin, E. L. Goldstein, R. W. Tkach, "Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects," IEEE Photon. Technol. Lett. 10, 525-527 (1998).

1996

H. Toshiyoshi, H. Fujita, "Electrostatic micro torsion mirrors for an optical switch matrix," J. Microelectromech. Syst. 5, 231-237 (1996).

1995

D. W. Monk, R. O. Gale, "The digital micromirror device for projection display," Microelectron. Eng. 27, 489-493 (1995).

1994

M. Sato, "Electrocapillarity optical switch," IEICE Trans. Commun. E77-B, 197-203 (1994).

T. Kanai, A. Nagayama, S. Inagaki, K. Sasakura, "Automated optical main-distributing-frame system," J. Lightw. Technol. 12, 1986-1992 (1994).

Y. Hakamata, T. Yoshizawa, T. Kodaira, "A 1.3 mm single-mode 2$\,{\times}\,$2 liquid crystal optical switch," IEICE Trans. Commun. E77-B, 1249-1255 (1994).

K. Sato, M. Shikida, "An electrostatically actuated gas valve with and S-shaped film element," J. Micromech. Microeng. 205-209 (1994).

IEEE J. Sel. Topics Quantum Electron.

F. Chollet, M. de Labachelerie, H. Fujita, "Compact evanescent optical switch and actuator with electromechanical actuation," IEEE J. Sel. Topics Quantum Electron. 5, 52-59 (1999).

IEEE Photon. Technol. Lett.

Y. Yang, B. Liao, "A novel 4$\,{\times}\,$4 optical switch using an anisotropically etched micromirror array and a bistable mini-actuator array," IEEE Photon. Technol. Lett. 21, 115-117 (2009).

L. Y. Lin, E. L. Goldstein, R. W. Tkach, "Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects," IEEE Photon. Technol. Lett. 10, 525-527 (1998).

IEICE Trans. Commun.

M. Sato, "Electrocapillarity optical switch," IEICE Trans. Commun. E77-B, 197-203 (1994).

Y. Hakamata, T. Yoshizawa, T. Kodaira, "A 1.3 mm single-mode 2$\,{\times}\,$2 liquid crystal optical switch," IEICE Trans. Commun. E77-B, 1249-1255 (1994).

J. Lightw. Technol.

T. Kanai, A. Nagayama, S. Inagaki, K. Sasakura, "Automated optical main-distributing-frame system," J. Lightw. Technol. 12, 1986-1992 (1994).

R. R. A. Syms, "Scaling laws for MEMS mirror-rotation optical cross connect switches," J. Lightw. Technol. 20, 1084-1095 (2002).

M. Makihara, M. Sato, F. Shimokawa, Y. Nishida, "Micromechanical optical switches based on thermocapillary integrated in waveguide substrate," J. Lightw. Technol. 17, 14-18 (1999).

T. Sakata, H. Togo, M. Makihara, F. Shimokawa, K. Kaneko, "Improvement of switching time in a thermocapillary optical switch," J. Lightw. Technol. 19, 14-18 (2001).

S. Lee, L. Huang, C. Kim, M. C. Wu, "Fiber-optic switches based on MEMS vertical torsion mirrors," J. Lightw. Technol. 17, 7-13 (1999).

C. Ji, Y. Kim, "Electromagnetic micromirror array with single-crystal silicon mirror plate and aluminum spring," J. Lightw. Technol. 21, 584-590 (2003).

C. Marxer, N. F. de Rooij, "Micro-opto-mechanical 2$\,{\times}\,$2 switch for single-mode fibers based on plasma-etched silicon mirror and electrostatic actuation," J. Lightw. Technol. 17, 2-6 (1999).

P. Helin, M. Mita, T. Bourouina, G. Reyne, H. Fujita, "Self-aligned micromachining process for large-scale, free-space optical cross-connects," J. Lightw. Technol. 18, 1785-1791 (2000).

J. Microelectromech. Syst.

D. S. Greywall, P. A. Busch, F. Pardo, D. W. Carr, G. Bogart, H. T. Soh, "Crystalline silicon tilting mirrors for optical cross-connect switches," J. Microelectromech. Syst. 12, 708-712 (2003).

J. J. Bernstein, W. O. Taylor, J. D. Brazzle, C. J. Corcoran, G. Kirkos, J. E. Odhner, A. Pareek, M. Waelti, M. Zai, "Electromagnetically actuated mirror arrays for use in 3-D optical switching applications," J. Microelectromech. Syst. 13, 526-535 (2004).

H. Toshiyoshi, H. Fujita, "Electrostatic micro torsion mirrors for an optical switch matrix," J. Microelectromech. Syst. 5, 231-237 (1996).

J. Micromech. Microeng.

K. Sato, M. Shikida, "An electrostatically actuated gas valve with and S-shaped film element," J. Micromech. Microeng. 205-209 (1994).

Microelectron. Eng.

D. W. Monk, R. O. Gale, "The digital micromirror device for projection display," Microelectron. Eng. 27, 489-493 (1995).

Microelectron. J.

C. Jia, J. Zhou, W. Dong, W. Chen, "Design and fabrication of silicon-based 8$\,{\times}\,$8 MEMS optical switch array," Microelectron. J. 40, 83-86 (2009).

Proc. IEEE

C. W. Mclaughlin, "Progress in projection and large-area displays," Proc. IEEE 90, 521-532 (2002).

Other

R. A. Miller, Y. Tai, G. Xu, J. Bartha, F. Lin, "An electromagnetic MEMS 2$\,\times\,$2 fiber optic bypass switch," Proc. Transducers'97 (1997) pp. 89-92.

M. Selbrede, B. Yost, "Time multiplexed optical shutter (TMOS) display technology for avionics platforms," Proc. SPIE (2006) pp. 62251B.

T. Oguchi, M. Hayase, T. Hatsuzawa, "Electrostatically driven micro-optical switching device based on interference of light and evanescent coupling," Proc. SPIE (2002) pp. 213-220.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.