Abstract

A novel wavelength routing device for optical on-chip network applications is presented. It is based on the constructive and destructive interferences that occur when two side-coupled integrated spaced sequences of resonators (SCISSORs) are coupled in parallel to a single common waveguide. Its potential application for coarse wavelength division multiplexing, i.e., band routing functionalities, and its robustness against fabrication tolerances and signal imbalances are analyzed. Design, simulation, fabrication, and experimental characterizations are described. We compare measurements of the fabricated device with simulations for the ideal and the actual device, where random variations in the geometrical parameters inherent in the fabrication process are considered. This allows demonstrating the concept of interferometric SCISSOR routing and to discuss the limits and advantages of coupled resonator-based design for routing.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription