Abstract

The multipath-induced intersymbol interference (ISI) and fluorescent light interference (FLI) are the two most important system impairments that affect the performance of indoor optical wireless communication systems. The presence of either incurs a high optical power penalty and hence the interferences should be mitigated with suitable techniques to ensure optimum system performance. The discrete wavelet transform (DWT) and the artificial neural network (ANN)-based receiver to mitigate the effect of FLI and ISI has been proposed in the previous study for the ON–OFF keying (OOK) modulation scheme. It offers performance improvement compared to the traditional methods of employing a high-pass filter and a finite impulse response equalizer. In this paper, the investigation of the DWT-ANN-based receiver for baseband modulation techniques including OOK, pulse position modulation, and digital pulse interval modulation is reported. The proposed system is implemented using digital signal processing board and results are verified by comparison with simulation data.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. W. Ke, A. Nirmalathas, C. Lim, E. Skafidas, "4$\,\times\,$12.5 Gb/s WDM optical wireless communication system for indoor applications," J. Lightw. Technol. 29, 1988-1996 (2011).
  2. D. O'Brien, G. Parry, P. Stavrinou, "Optical hotspots speed up wireless communication," Nature Photon. 1, 245-247 (2007).
  3. R. J. Green, H. Joshi, M. D. Higgins, M. S. Leeson, "Recent developments in indoor optical wireless systems," IET Commun. 2, 3-10 (2008).
  4. A. J. C. Moreira, R. T. Valadas, A. M. Duarte, "Reducing the effects of artificial light interference in wireless infrared transmission systems," Proc. IEE Colloquium Opt. Free Space Commun. Links (1996) pp. 5-1-5-10.
  5. S. Lee, "Reducing the effects of ambient noise light in an indoor optical wireless system using polarizers," Microw. Opt. Technol. Lett. 40, 228-230 (2004).
  6. S. Rajbhandari, Z. Ghassemlooy, M. Angelova, "Effective denoising and adaptive equalization of indoor optical wireless channel with artificial light using the discrete wavelet transform and artificial neural network," J. Lightw. Technol. 27, 4493-4500 (2009).
  7. A. R. Hayes, Digital pulse interval modulation for indoor optical wireless communication systems Ph.D. dissertation Sheffield Hallam Univ.South YorkshireU.K. (2002).
  8. D. C. Lee, J. M. Kahn, "Coding and equalization for PPM on wireless infrared channels," IEEE Trans. Commun. 47, 255-260 (1999).
  9. L. Hanzo, C. H. Wong, M. S. Yee, Adaptive Wireless Transceivers (Wiley-IEEE Press, 2002) pp. 299-383.
  10. C. Ching-Haur, S. Sammy, W. Che-Ho, "A polynomial-perceptron based decision feedback equalizer with a robust learning algorithm," Signal Process. 47, 145-158 (1995).
  11. A. Hussain, J. J. Soraghan, T. S. Durrani, "A new adaptive functional-link neural-network-based DFE for overcoming co-channel interference," IEEE Trans. Commun. 45, 1358-1362 (1997).
  12. Z. Ghassemlooy, F. Iet, W. O. Popoola, S. Rajbh, M. Amiri, S. Hashemi, "A synopsis of modulation techniques for wireless infrared communication," Proc. ICTON Mediterranean Winter Conf. (2007) pp. 1-6.
  13. A. J. C. Moreira, R. T. Valadas, A. M. D. O. Duarte, "Performance of infrared transmission systems under ambient light interference," IEE Proc.—Optoelectron. 143, 339-346 (1996).
  14. R. Narasimhan, M. D. Audeh, J. M. Kahn, "Effect of electronic-ballast fluorescent lighting on wireless infrared links," IEE Proc.—Optoelectron. 143, 347-354 (1996).
  15. J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, D. G. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, 367-379 (1993).
  16. A. J. C. Moreira, R. T. Valadas, A. M. d. O. Duarte, "Optical interference produced by artificial light," Wireless Netw. 3, 131-140 (1997).
  17. C. S. Burrus, R. A. Gopinath, H. Guo, Introduction to Wavelets and Wavelet Transforms: A Primer (Prentice-Hall, 1998).
  18. J. B. Carruthers, J. M. Kahn, "Modeling of nondirected wireless infrared channels," IEEE Trans. Commun. 45, 1260-1268 (1997).

2011 (1)

W. Ke, A. Nirmalathas, C. Lim, E. Skafidas, "4$\,\times\,$12.5 Gb/s WDM optical wireless communication system for indoor applications," J. Lightw. Technol. 29, 1988-1996 (2011).

2009 (1)

S. Rajbhandari, Z. Ghassemlooy, M. Angelova, "Effective denoising and adaptive equalization of indoor optical wireless channel with artificial light using the discrete wavelet transform and artificial neural network," J. Lightw. Technol. 27, 4493-4500 (2009).

2008 (1)

R. J. Green, H. Joshi, M. D. Higgins, M. S. Leeson, "Recent developments in indoor optical wireless systems," IET Commun. 2, 3-10 (2008).

2007 (1)

D. O'Brien, G. Parry, P. Stavrinou, "Optical hotspots speed up wireless communication," Nature Photon. 1, 245-247 (2007).

2004 (1)

S. Lee, "Reducing the effects of ambient noise light in an indoor optical wireless system using polarizers," Microw. Opt. Technol. Lett. 40, 228-230 (2004).

1999 (1)

D. C. Lee, J. M. Kahn, "Coding and equalization for PPM on wireless infrared channels," IEEE Trans. Commun. 47, 255-260 (1999).

1997 (3)

A. J. C. Moreira, R. T. Valadas, A. M. d. O. Duarte, "Optical interference produced by artificial light," Wireless Netw. 3, 131-140 (1997).

J. B. Carruthers, J. M. Kahn, "Modeling of nondirected wireless infrared channels," IEEE Trans. Commun. 45, 1260-1268 (1997).

A. Hussain, J. J. Soraghan, T. S. Durrani, "A new adaptive functional-link neural-network-based DFE for overcoming co-channel interference," IEEE Trans. Commun. 45, 1358-1362 (1997).

1996 (2)

A. J. C. Moreira, R. T. Valadas, A. M. D. O. Duarte, "Performance of infrared transmission systems under ambient light interference," IEE Proc.—Optoelectron. 143, 339-346 (1996).

R. Narasimhan, M. D. Audeh, J. M. Kahn, "Effect of electronic-ballast fluorescent lighting on wireless infrared links," IEE Proc.—Optoelectron. 143, 347-354 (1996).

1995 (1)

C. Ching-Haur, S. Sammy, W. Che-Ho, "A polynomial-perceptron based decision feedback equalizer with a robust learning algorithm," Signal Process. 47, 145-158 (1995).

1993 (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, D. G. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, 367-379 (1993).

IEE Proc.—Optoelectron. (2)

A. J. C. Moreira, R. T. Valadas, A. M. D. O. Duarte, "Performance of infrared transmission systems under ambient light interference," IEE Proc.—Optoelectron. 143, 339-346 (1996).

R. Narasimhan, M. D. Audeh, J. M. Kahn, "Effect of electronic-ballast fluorescent lighting on wireless infrared links," IEE Proc.—Optoelectron. 143, 347-354 (1996).

IEEE J. Sel. Areas Commun. (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, D. G. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, 367-379 (1993).

IEEE Trans. Commun. (3)

A. Hussain, J. J. Soraghan, T. S. Durrani, "A new adaptive functional-link neural-network-based DFE for overcoming co-channel interference," IEEE Trans. Commun. 45, 1358-1362 (1997).

D. C. Lee, J. M. Kahn, "Coding and equalization for PPM on wireless infrared channels," IEEE Trans. Commun. 47, 255-260 (1999).

J. B. Carruthers, J. M. Kahn, "Modeling of nondirected wireless infrared channels," IEEE Trans. Commun. 45, 1260-1268 (1997).

IET Commun. (1)

R. J. Green, H. Joshi, M. D. Higgins, M. S. Leeson, "Recent developments in indoor optical wireless systems," IET Commun. 2, 3-10 (2008).

J. Lightw. Technol. (2)

W. Ke, A. Nirmalathas, C. Lim, E. Skafidas, "4$\,\times\,$12.5 Gb/s WDM optical wireless communication system for indoor applications," J. Lightw. Technol. 29, 1988-1996 (2011).

S. Rajbhandari, Z. Ghassemlooy, M. Angelova, "Effective denoising and adaptive equalization of indoor optical wireless channel with artificial light using the discrete wavelet transform and artificial neural network," J. Lightw. Technol. 27, 4493-4500 (2009).

Microw. Opt. Technol. Lett. (1)

S. Lee, "Reducing the effects of ambient noise light in an indoor optical wireless system using polarizers," Microw. Opt. Technol. Lett. 40, 228-230 (2004).

Nature Photon. (1)

D. O'Brien, G. Parry, P. Stavrinou, "Optical hotspots speed up wireless communication," Nature Photon. 1, 245-247 (2007).

Signal Process. (1)

C. Ching-Haur, S. Sammy, W. Che-Ho, "A polynomial-perceptron based decision feedback equalizer with a robust learning algorithm," Signal Process. 47, 145-158 (1995).

Wireless Netw. (1)

A. J. C. Moreira, R. T. Valadas, A. M. d. O. Duarte, "Optical interference produced by artificial light," Wireless Netw. 3, 131-140 (1997).

Other (5)

C. S. Burrus, R. A. Gopinath, H. Guo, Introduction to Wavelets and Wavelet Transforms: A Primer (Prentice-Hall, 1998).

Z. Ghassemlooy, F. Iet, W. O. Popoola, S. Rajbh, M. Amiri, S. Hashemi, "A synopsis of modulation techniques for wireless infrared communication," Proc. ICTON Mediterranean Winter Conf. (2007) pp. 1-6.

A. J. C. Moreira, R. T. Valadas, A. M. Duarte, "Reducing the effects of artificial light interference in wireless infrared transmission systems," Proc. IEE Colloquium Opt. Free Space Commun. Links (1996) pp. 5-1-5-10.

A. R. Hayes, Digital pulse interval modulation for indoor optical wireless communication systems Ph.D. dissertation Sheffield Hallam Univ.South YorkshireU.K. (2002).

L. Hanzo, C. H. Wong, M. S. Yee, Adaptive Wireless Transceivers (Wiley-IEEE Press, 2002) pp. 299-383.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.