Abstract

We investigate the bending characteristics of leakage channel fibers (LCFs) to achieve large mode area (LMA) and effectively single-mode operation with a practically allowable bending radius for compact Yb-doped fiber applications. Through numerical simulations, carried by the full-vectorial finite-element method, we present the limitations on the effective area of LCFs under bent condition and compare their limits with that of conventional step-index LMA fibers. Due to a better controllability of the low numerical aperture and a large value of the differential bending loss (~{20 dB/m) between the fundamental and higher order modes in LCFs, the LMA of ~500 <i>μ</i>m<sup>2</sup> (core diameter of ~36 <i>μ</i>m) at 1064 nm can be achieved when the optimized LCF is bent into a 10 cm bending radius.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, L. Dong, "Large mode area fibers for high power applications," Opt. Fiber Technol. 5, 185-196 (1999).
  2. J. P. Koplow, D. A. V. Kliner, L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000).
  3. A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Topics Quantum Electron. 7, 504-517 (2001).
  4. Y. Jeong, J. K. Sahu, D. N. Payne, J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-472 (2004).
  5. M. M. Vogel, M. Abdou-Ahmed, A. Voss, T. Graf, "Very-large-mode-area, single-mode multicore fiber," Opt. Lett. 34, 2876-2878 (2009).
  6. M. J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, L. A. Zenteno, "Effective area limit for large mode area laser fibers," presented at the Opt. Fiber Commun. Conf. Exposition/National Fiber Opt. Eng. Conf. San DiegoCA (2008) Paper OTuJ2.
  7. A. Galvanauskas, M. C. Swan, C. Liu, "Effectively single-mode large core passive and active fibers with chirally coupled-core structures," presented at the Conf. Lasers Electro-Opt./Quantum Electron. Laser Sci. Conf. San JoseCA (2008) Paper CMB1.
  8. E. Coscelli, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, T. T. Alkeskjold, L. Leick, J. Broeng, "Single-mode regime of large mode area double cladding photonic crystal fibers," presented at the Eur. Conf. Lasers Electro-Opt. MunichGermany (2011) Paper CJ${\_}$P20.
  9. F. Poli, E. Coscelli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, S. Selleri, "Cut-off analysis of 19-cell Yb-doped double-cladding rod-type photonic crystal fibers," Opt. Exp. 19, 9896-9907 (2011).
  10. M. Takahashi, K. Mukasa, K. Imamura, T. Yagi, "Single-mode holey fibers with record Aeff of 50 000 $\mu$m$^{2}$," presented at the 35th Eur. Conf. Opt. Commun. ViennaAustria (2009) Paper 7.1.1.
  11. M. D. Nielsen, J. R. Folkenberg, N. A. Mortensen, "Singlemode photonic crystal fibre with effective area of 600 $\mu$m$^{2}$ and low bending loss," Electron. Lett. 39, 1802-1803 (2003).
  12. W. S. Wong, X. Peng, J. M. McLanghlin, L. Dong, "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers," Opt. Lett. 30, 2855-2857 (2005).
  13. L. Dong, J. Li, X. Peng, "Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 $\mu$m$^{2}$," Opt. Exp. 14, 11512-11519 (2006).
  14. X. Peng, L. Dong, "Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 $\mu$m$^{2}$," Opt. Lett. 32, 358-360 (2007).
  15. L. Dong, X. Peng, J. Li, "Leakage channel optical fibers with large effective area," J. Opt. Soc. Amer. B 24, 1689-1697 (2007).
  16. L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, M. E. Fermann, "Robust and practical optical fibers for single mode operation with core diameters up to 170 $\mu$m," presented at the Conf. Lasers and Electro-Opt. Quantum Electron. Laser Sci. Conf. San JoseCA (2008) .
  17. T. Wu, L. Dong, H. Winful, "Bend performance of leakage channel fibers," Opt. Exp. 16, 4278-4285 (2008).
  18. K. Saitoh, Y. Tsuchida, L. Rosa, M. Koshiba, F. Poli, A. Cucinotta, S. Selleri, M. Pal, M. Paul, D. Ghosh, S. Bhadra, "Design of all-solid leakage channel fibers with large mode area and low bending loss," Opt. Exp. 17, 4913-4919 (2009).
  19. J. M. Fini, "Bend-resistant design of conventional and microstructure fibers with very large mode area," Opt. Exp. 14, 69-81 (2006).
  20. K. Saitoh, M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
  21. K. Kakihara, N. Kono, K. Saitoh, M. Koshiba, "Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends," Opt. Exp. 14, 11128-11141 (2006).
  22. J. Olszewski, M. Szpulak, W. Urbańczyk, "Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers," Opt. Exp. 13, 6015-6022 (2005).

2011 (1)

F. Poli, E. Coscelli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, S. Selleri, "Cut-off analysis of 19-cell Yb-doped double-cladding rod-type photonic crystal fibers," Opt. Exp. 19, 9896-9907 (2011).

2009 (2)

K. Saitoh, Y. Tsuchida, L. Rosa, M. Koshiba, F. Poli, A. Cucinotta, S. Selleri, M. Pal, M. Paul, D. Ghosh, S. Bhadra, "Design of all-solid leakage channel fibers with large mode area and low bending loss," Opt. Exp. 17, 4913-4919 (2009).

M. M. Vogel, M. Abdou-Ahmed, A. Voss, T. Graf, "Very-large-mode-area, single-mode multicore fiber," Opt. Lett. 34, 2876-2878 (2009).

2008 (1)

T. Wu, L. Dong, H. Winful, "Bend performance of leakage channel fibers," Opt. Exp. 16, 4278-4285 (2008).

2007 (2)

X. Peng, L. Dong, "Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 $\mu$m$^{2}$," Opt. Lett. 32, 358-360 (2007).

L. Dong, X. Peng, J. Li, "Leakage channel optical fibers with large effective area," J. Opt. Soc. Amer. B 24, 1689-1697 (2007).

2006 (3)

J. M. Fini, "Bend-resistant design of conventional and microstructure fibers with very large mode area," Opt. Exp. 14, 69-81 (2006).

L. Dong, J. Li, X. Peng, "Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 $\mu$m$^{2}$," Opt. Exp. 14, 11512-11519 (2006).

K. Kakihara, N. Kono, K. Saitoh, M. Koshiba, "Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends," Opt. Exp. 14, 11128-11141 (2006).

2005 (2)

J. Olszewski, M. Szpulak, W. Urbańczyk, "Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers," Opt. Exp. 13, 6015-6022 (2005).

W. S. Wong, X. Peng, J. M. McLanghlin, L. Dong, "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers," Opt. Lett. 30, 2855-2857 (2005).

2004 (1)

Y. Jeong, J. K. Sahu, D. N. Payne, J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-472 (2004).

2003 (1)

M. D. Nielsen, J. R. Folkenberg, N. A. Mortensen, "Singlemode photonic crystal fibre with effective area of 600 $\mu$m$^{2}$ and low bending loss," Electron. Lett. 39, 1802-1803 (2003).

2002 (1)

K. Saitoh, M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).

2001 (1)

A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Topics Quantum Electron. 7, 504-517 (2001).

2000 (1)

1999 (1)

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, L. Dong, "Large mode area fibers for high power applications," Opt. Fiber Technol. 5, 185-196 (1999).

Electron. Lett. (2)

Y. Jeong, J. K. Sahu, D. N. Payne, J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-472 (2004).

M. D. Nielsen, J. R. Folkenberg, N. A. Mortensen, "Singlemode photonic crystal fibre with effective area of 600 $\mu$m$^{2}$ and low bending loss," Electron. Lett. 39, 1802-1803 (2003).

IEEE J. Quantum Electron. (1)

K. Saitoh, M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).

IEEE J. Sel. Topics Quantum Electron. (1)

A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Topics Quantum Electron. 7, 504-517 (2001).

J. Opt. Soc. Amer. B (1)

L. Dong, X. Peng, J. Li, "Leakage channel optical fibers with large effective area," J. Opt. Soc. Amer. B 24, 1689-1697 (2007).

Opt. Exp. (2)

L. Dong, J. Li, X. Peng, "Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 $\mu$m$^{2}$," Opt. Exp. 14, 11512-11519 (2006).

J. M. Fini, "Bend-resistant design of conventional and microstructure fibers with very large mode area," Opt. Exp. 14, 69-81 (2006).

Opt. Lett. (2)

X. Peng, L. Dong, "Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 $\mu$m$^{2}$," Opt. Lett. 32, 358-360 (2007).

W. S. Wong, X. Peng, J. M. McLanghlin, L. Dong, "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers," Opt. Lett. 30, 2855-2857 (2005).

Opt. Exp. (5)

T. Wu, L. Dong, H. Winful, "Bend performance of leakage channel fibers," Opt. Exp. 16, 4278-4285 (2008).

K. Saitoh, Y. Tsuchida, L. Rosa, M. Koshiba, F. Poli, A. Cucinotta, S. Selleri, M. Pal, M. Paul, D. Ghosh, S. Bhadra, "Design of all-solid leakage channel fibers with large mode area and low bending loss," Opt. Exp. 17, 4913-4919 (2009).

F. Poli, E. Coscelli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, S. Selleri, "Cut-off analysis of 19-cell Yb-doped double-cladding rod-type photonic crystal fibers," Opt. Exp. 19, 9896-9907 (2011).

K. Kakihara, N. Kono, K. Saitoh, M. Koshiba, "Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends," Opt. Exp. 14, 11128-11141 (2006).

J. Olszewski, M. Szpulak, W. Urbańczyk, "Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers," Opt. Exp. 13, 6015-6022 (2005).

Opt. Fiber Technol. (1)

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, L. Dong, "Large mode area fibers for high power applications," Opt. Fiber Technol. 5, 185-196 (1999).

Opt. Lett. (2)

Other (5)

M. J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, L. A. Zenteno, "Effective area limit for large mode area laser fibers," presented at the Opt. Fiber Commun. Conf. Exposition/National Fiber Opt. Eng. Conf. San DiegoCA (2008) Paper OTuJ2.

A. Galvanauskas, M. C. Swan, C. Liu, "Effectively single-mode large core passive and active fibers with chirally coupled-core structures," presented at the Conf. Lasers Electro-Opt./Quantum Electron. Laser Sci. Conf. San JoseCA (2008) Paper CMB1.

E. Coscelli, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, T. T. Alkeskjold, L. Leick, J. Broeng, "Single-mode regime of large mode area double cladding photonic crystal fibers," presented at the Eur. Conf. Lasers Electro-Opt. MunichGermany (2011) Paper CJ${\_}$P20.

M. Takahashi, K. Mukasa, K. Imamura, T. Yagi, "Single-mode holey fibers with record Aeff of 50 000 $\mu$m$^{2}$," presented at the 35th Eur. Conf. Opt. Commun. ViennaAustria (2009) Paper 7.1.1.

L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, M. E. Fermann, "Robust and practical optical fibers for single mode operation with core diameters up to 170 $\mu$m," presented at the Conf. Lasers and Electro-Opt. Quantum Electron. Laser Sci. Conf. San JoseCA (2008) .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.