Abstract

Compact polarization control elements based on index-guiding soft-glass photonic crystal fibers infiltrated with nematic liquid crystals are proposed and thoroughly studied. The nematic director profiles at the fiber's cross section are consistently calculated by solving the coupled electrostatic and elastic problem, in the context of an analysis on the tunability of liquid-crystal-infiltrated photonic crystal fibers. The fiber's dispersive properties and light propagation in the proposed polarization controller are studied by means of a fully anisotropic finite-element-based beam propagation method. The electrically induced evolution of the state of polarization is mapped on the Poincaré sphere. Efficient polarization conversion is demonstrated, with a crosstalk of -50 dB, for a total device length of 4.65 mm and a maximum applied voltage of 150 V. Crosstalk values lower than -20 dB are achieved over a 30 nm window. The proposed devices are envisaged as compact all-in-fiber dynamic polarization controllers.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
  2. P. St. J. Russell, "Photonic-crystal fibers," J. Lightw. Technol. 24, 4729-4749 (2006).
  3. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber," Opt. Lett. 27, 842-844 (2002).
  4. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Exp. 12, 5857-5871 (2004).
  5. M. W. Haakestad, T. T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. E. Engan, A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
  6. J. Sun, C. C. Chan, "Effect of liquid crystal alignment on bandgap formation in photonic bandgap fibers," Opt. Lett. 32, 1989-1991 (2007).
  7. D. Noordegraaf, L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, S.-T. Wu, "Avoided-crossing-based liquid-crystal photonic-bandgap notch filter," Opt. Lett. 33, 986-988 (2008).
  8. J. Weirich, J. Lægsgaard, L. Scolari, L. Wei, T. T. Alkeskjold, A. Bjarklev, "Biased liquid crystal infiltrated photonic bandgap fiber," Opt. Exp. 17, 4442-4453 (2009).
  9. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Exp. 13, 7483-7496 (2005).
  10. T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domański, E. Nowinowski-Kruszelnicki, R. Da¸browski, J. Wójcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18, 3061-3069 (2007).
  11. D. C. Zografopoulos, E. E. Kriezis, T. D. Tsiboukis, "Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance," Opt. Exp. 14, 914-925 (2006).
  12. D. C. Zografopoulos, E. E. Kriezis, T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers," J. Lightw. Technol. 24, 3427-3432 (2006).
  13. D. C. Zografopoulos, E. E. Kriezis, "Tunable polarization properties of hybrid-guiding photonic crystal fibers," J. Lightw. Technol. 27, 773-779 (2009).
  14. S. Ertman, T. R. Woliński, J. Beeckman, K. Neyts, P. J. M. Vanbrabant, R. James, F. A. Fernández, "Numerical simulations of electrically induced birefringence in photonic liquid crystal fibers," Acta Phys. Polon. A 118, 1113-1117 (2010).
  15. T. T. Alkeskjold, A. Bjarklev, "Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter," Opt. Lett. 32, 1707-1709 (2007).
  16. S. Ertman, T. R. Woliński, D. Pysz, R. Buczyński, E. Nowinowski-Kruszelnicki, R. Da¸browski, "Low-loss propagation and continuously tunable birefringence in high-index photonic crystal fibers filled with nematic liquid crystals," Opt. Exp. 17, 19298-19310 (2009).
  17. L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, A. Bjarklev, "Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers," Appl. Opt. 48, 497-503 (2009).
  18. L. Wei, T. T. Alkeskjold, A. Bjarklev, "Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal," Appl. Phys. Lett. 96, (2010) art. 241104.
  19. M. F. O. Hameed, S. S. A. Obayya, "Analysis of polarization rotator based on nematic liquid crystal photonic crystal fiber," J. Lightw. Technol. 28, 806-815 (2010).
  20. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, X. Dong, "Electrically tunable sagnac filter based on a photonic bandgap fiber with liquid crystal infused," Opt. Lett. 33, 2215-2217 (2008).
  21. M. Lehtonen, G. Genty, H. Ludvigsen, M. Kaivola, "Supercontinuum generation in a highly birefringent microstructured fiber," App. Phys. Lett. 82, 2197-2199 (2003).
  22. M. F. O. Hameed, S. S. A. Obayya, K. Al-Begain, M. I. A. el Maaty, A. M. Nasr, "Modal properties of an index guiding nematic liquid crystal based photonic crystal fiber," J. Lightw. Technol. 27, 4754-4762 (2009).
  23. S. V. Burylov, "Equilibrium configuration of a nematic liquid crystal confined to a cylindrical cavity," J. Exp. Theor. Phys. 85, 873-886 (1997).
  24. J. Weirich, J. Lægsgaard, L. Wei, T. T. Alkeskjold, T. X. Wu, S. T. Wu, A. Bjarklev, "Liquid crystal parameter analysis for tunable photonic bandgap fiber devices," Opt. Exp. 18, 4074-4087 (2010).
  25. FlexPDE, PDE Solutions Inc. http://www.pdesolutions.com.
  26. J. Lægsgaard, "Modeling of a biased liquid-crystal capillary waveguide," J. Opt. Soc. Am. B 23, 1843-1851 (2006).
  27. X. Feng, A. K. Mairaj, D. W. Hewak, T. M. Monro, "Nonsilica glasses for holey fibers," J. Lightw. Technol. 23, 2046-2054 (2005).
  28. B. M. Cohen, D. R. Uhlmann, R. R. Shaw, "Optical and electrical properties of lead silicate glasses," J. Non-Cryst. Sol. 12, 177-188 (1973).
  29. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, T. M. Monro, "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers," Opt. Exp. 11, 3568-3573 (2003).
  30. J. Y. Y. Leong, Fabrication and applications of lead-silicate glass holey fiber for 1–1.5 microns: Nonlinearity and dispersion trade offs Ph.D. dissertation Faculty Eng., Sci. Math., Univ. SouthamptonSouthamptonU.K. (2007).
  31. S. Fujino, H. Ijiri, F. Shimizu, K. Morinaga, "Measurement of viscosity of multi-component glasses in the wide range for fibre drawing," J. Jpn. Inst. Met. 62, 106-110 (1998).
  32. SCHOTT AG lead-oxide optical fiberglass series http://www.schott.com.
  33. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, (2005) art. 073501.
  34. G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, J. C. Knight, "All-fiber devices based on photonic crystal fibers with integrated electrodes," Opt. Exp. 17, 1660-1665 (2009).
  35. K. Saitoh, M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightw. Technol. 19, 405-413 (2001).
  36. G. D. Ziogos, E. E. Kriezis, "Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method," Opt. Quantum Electron. 40, 733-748 (2008).
  37. J. Beeckman, R. James, F. A. Fernández, W. de Cort, P. J. M. Vanbrabant, K. Neyts, "Calculation of fully anisotropic liquid crystal waveguide modes," J. Lightw. Technol. 27, 3812-3819 (2009).
  38. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, S.-T. Wu, "Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber," Appl. Opt. 45, 2261-2264 (2006).
  39. L. Wei, J. Weirich, T. T. Alkeskjold, A. Bjarklev, "On-chip tunable long-period grating devices based on liquid crystal photonic bandgap fibers," Opt. Lett. 34, 3818-3820 (2009).
  40. Y.-H. Oh, M.-S. Kwon, S.-Y. Shin, S. Choi, K. Oh, "In-line polarization controller that uses a hollow optical fiber filled with a liquid crystal," Opt. Lett. 29, 2605-2607 (2004).
  41. Z. Zhuang, S.-W. Suh, J. S. Patel, "Polarization controller using nematic liquid crystals," Opt. Lett. 24, 694-696 (1999).

2010 (4)

S. Ertman, T. R. Woliński, J. Beeckman, K. Neyts, P. J. M. Vanbrabant, R. James, F. A. Fernández, "Numerical simulations of electrically induced birefringence in photonic liquid crystal fibers," Acta Phys. Polon. A 118, 1113-1117 (2010).

J. Weirich, J. Lægsgaard, L. Wei, T. T. Alkeskjold, T. X. Wu, S. T. Wu, A. Bjarklev, "Liquid crystal parameter analysis for tunable photonic bandgap fiber devices," Opt. Exp. 18, 4074-4087 (2010).

L. Wei, T. T. Alkeskjold, A. Bjarklev, "Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal," Appl. Phys. Lett. 96, (2010) art. 241104.

M. F. O. Hameed, S. S. A. Obayya, "Analysis of polarization rotator based on nematic liquid crystal photonic crystal fiber," J. Lightw. Technol. 28, 806-815 (2010).

2009 (8)

J. Beeckman, R. James, F. A. Fernández, W. de Cort, P. J. M. Vanbrabant, K. Neyts, "Calculation of fully anisotropic liquid crystal waveguide modes," J. Lightw. Technol. 27, 3812-3819 (2009).

M. F. O. Hameed, S. S. A. Obayya, K. Al-Begain, M. I. A. el Maaty, A. M. Nasr, "Modal properties of an index guiding nematic liquid crystal based photonic crystal fiber," J. Lightw. Technol. 27, 4754-4762 (2009).

J. Weirich, J. Lægsgaard, L. Scolari, L. Wei, T. T. Alkeskjold, A. Bjarklev, "Biased liquid crystal infiltrated photonic bandgap fiber," Opt. Exp. 17, 4442-4453 (2009).

D. C. Zografopoulos, E. E. Kriezis, "Tunable polarization properties of hybrid-guiding photonic crystal fibers," J. Lightw. Technol. 27, 773-779 (2009).

S. Ertman, T. R. Woliński, D. Pysz, R. Buczyński, E. Nowinowski-Kruszelnicki, R. Da¸browski, "Low-loss propagation and continuously tunable birefringence in high-index photonic crystal fibers filled with nematic liquid crystals," Opt. Exp. 17, 19298-19310 (2009).

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, J. C. Knight, "All-fiber devices based on photonic crystal fibers with integrated electrodes," Opt. Exp. 17, 1660-1665 (2009).

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, A. Bjarklev, "Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers," Appl. Opt. 48, 497-503 (2009).

L. Wei, J. Weirich, T. T. Alkeskjold, A. Bjarklev, "On-chip tunable long-period grating devices based on liquid crystal photonic bandgap fibers," Opt. Lett. 34, 3818-3820 (2009).

2008 (3)

2007 (3)

T. T. Alkeskjold, A. Bjarklev, "Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter," Opt. Lett. 32, 1707-1709 (2007).

J. Sun, C. C. Chan, "Effect of liquid crystal alignment on bandgap formation in photonic bandgap fibers," Opt. Lett. 32, 1989-1991 (2007).

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domański, E. Nowinowski-Kruszelnicki, R. Da¸browski, J. Wójcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18, 3061-3069 (2007).

2006 (5)

D. C. Zografopoulos, E. E. Kriezis, T. D. Tsiboukis, "Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance," Opt. Exp. 14, 914-925 (2006).

D. C. Zografopoulos, E. E. Kriezis, T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers," J. Lightw. Technol. 24, 3427-3432 (2006).

P. St. J. Russell, "Photonic-crystal fibers," J. Lightw. Technol. 24, 4729-4749 (2006).

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, S.-T. Wu, "Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber," Appl. Opt. 45, 2261-2264 (2006).

J. Lægsgaard, "Modeling of a biased liquid-crystal capillary waveguide," J. Opt. Soc. Am. B 23, 1843-1851 (2006).

2005 (4)

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, (2005) art. 073501.

X. Feng, A. K. Mairaj, D. W. Hewak, T. M. Monro, "Nonsilica glasses for holey fibers," J. Lightw. Technol. 23, 2046-2054 (2005).

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Exp. 13, 7483-7496 (2005).

M. W. Haakestad, T. T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. E. Engan, A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).

2004 (2)

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Exp. 12, 5857-5871 (2004).

Y.-H. Oh, M.-S. Kwon, S.-Y. Shin, S. Choi, K. Oh, "In-line polarization controller that uses a hollow optical fiber filled with a liquid crystal," Opt. Lett. 29, 2605-2607 (2004).

2003 (3)

M. Lehtonen, G. Genty, H. Ludvigsen, M. Kaivola, "Supercontinuum generation in a highly birefringent microstructured fiber," App. Phys. Lett. 82, 2197-2199 (2003).

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, T. M. Monro, "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers," Opt. Exp. 11, 3568-3573 (2003).

2002 (1)

2001 (1)

K. Saitoh, M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightw. Technol. 19, 405-413 (2001).

1999 (1)

1998 (1)

S. Fujino, H. Ijiri, F. Shimizu, K. Morinaga, "Measurement of viscosity of multi-component glasses in the wide range for fibre drawing," J. Jpn. Inst. Met. 62, 106-110 (1998).

1997 (1)

S. V. Burylov, "Equilibrium configuration of a nematic liquid crystal confined to a cylindrical cavity," J. Exp. Theor. Phys. 85, 873-886 (1997).

1973 (1)

B. M. Cohen, D. R. Uhlmann, R. R. Shaw, "Optical and electrical properties of lead silicate glasses," J. Non-Cryst. Sol. 12, 177-188 (1973).

Acta Phys. Polon. A (1)

S. Ertman, T. R. Woliński, J. Beeckman, K. Neyts, P. J. M. Vanbrabant, R. James, F. A. Fernández, "Numerical simulations of electrically induced birefringence in photonic liquid crystal fibers," Acta Phys. Polon. A 118, 1113-1117 (2010).

App. Phys. Lett. (1)

M. Lehtonen, G. Genty, H. Ludvigsen, M. Kaivola, "Supercontinuum generation in a highly birefringent microstructured fiber," App. Phys. Lett. 82, 2197-2199 (2003).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

L. Wei, T. T. Alkeskjold, A. Bjarklev, "Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal," Appl. Phys. Lett. 96, (2010) art. 241104.

IEEE Photon. Technol. Lett. (1)

M. W. Haakestad, T. T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. E. Engan, A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).

J. Appl. Phys. (1)

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, (2005) art. 073501.

J. Exp. Theor. Phys. (1)

S. V. Burylov, "Equilibrium configuration of a nematic liquid crystal confined to a cylindrical cavity," J. Exp. Theor. Phys. 85, 873-886 (1997).

J. Jpn. Inst. Met. (1)

S. Fujino, H. Ijiri, F. Shimizu, K. Morinaga, "Measurement of viscosity of multi-component glasses in the wide range for fibre drawing," J. Jpn. Inst. Met. 62, 106-110 (1998).

J. Lightw. Technol. (8)

X. Feng, A. K. Mairaj, D. W. Hewak, T. M. Monro, "Nonsilica glasses for holey fibers," J. Lightw. Technol. 23, 2046-2054 (2005).

M. F. O. Hameed, S. S. A. Obayya, K. Al-Begain, M. I. A. el Maaty, A. M. Nasr, "Modal properties of an index guiding nematic liquid crystal based photonic crystal fiber," J. Lightw. Technol. 27, 4754-4762 (2009).

P. St. J. Russell, "Photonic-crystal fibers," J. Lightw. Technol. 24, 4729-4749 (2006).

M. F. O. Hameed, S. S. A. Obayya, "Analysis of polarization rotator based on nematic liquid crystal photonic crystal fiber," J. Lightw. Technol. 28, 806-815 (2010).

D. C. Zografopoulos, E. E. Kriezis, T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers," J. Lightw. Technol. 24, 3427-3432 (2006).

D. C. Zografopoulos, E. E. Kriezis, "Tunable polarization properties of hybrid-guiding photonic crystal fibers," J. Lightw. Technol. 27, 773-779 (2009).

K. Saitoh, M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightw. Technol. 19, 405-413 (2001).

J. Beeckman, R. James, F. A. Fernández, W. de Cort, P. J. M. Vanbrabant, K. Neyts, "Calculation of fully anisotropic liquid crystal waveguide modes," J. Lightw. Technol. 27, 3812-3819 (2009).

J. Non-Cryst. Sol. (1)

B. M. Cohen, D. R. Uhlmann, R. R. Shaw, "Optical and electrical properties of lead silicate glasses," J. Non-Cryst. Sol. 12, 177-188 (1973).

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domański, E. Nowinowski-Kruszelnicki, R. Da¸browski, J. Wójcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18, 3061-3069 (2007).

Nature (1)

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).

Opt. Exp. (8)

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Exp. 12, 5857-5871 (2004).

J. Weirich, J. Lægsgaard, L. Scolari, L. Wei, T. T. Alkeskjold, A. Bjarklev, "Biased liquid crystal infiltrated photonic bandgap fiber," Opt. Exp. 17, 4442-4453 (2009).

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Exp. 13, 7483-7496 (2005).

D. C. Zografopoulos, E. E. Kriezis, T. D. Tsiboukis, "Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance," Opt. Exp. 14, 914-925 (2006).

S. Ertman, T. R. Woliński, D. Pysz, R. Buczyński, E. Nowinowski-Kruszelnicki, R. Da¸browski, "Low-loss propagation and continuously tunable birefringence in high-index photonic crystal fibers filled with nematic liquid crystals," Opt. Exp. 17, 19298-19310 (2009).

J. Weirich, J. Lægsgaard, L. Wei, T. T. Alkeskjold, T. X. Wu, S. T. Wu, A. Bjarklev, "Liquid crystal parameter analysis for tunable photonic bandgap fiber devices," Opt. Exp. 18, 4074-4087 (2010).

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, T. M. Monro, "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers," Opt. Exp. 11, 3568-3573 (2003).

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, J. C. Knight, "All-fiber devices based on photonic crystal fibers with integrated electrodes," Opt. Exp. 17, 1660-1665 (2009).

Opt. Lett. (8)

Opt. Quantum Electron. (1)

G. D. Ziogos, E. E. Kriezis, "Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method," Opt. Quantum Electron. 40, 733-748 (2008).

Other (3)

FlexPDE, PDE Solutions Inc. http://www.pdesolutions.com.

SCHOTT AG lead-oxide optical fiberglass series http://www.schott.com.

J. Y. Y. Leong, Fabrication and applications of lead-silicate glass holey fiber for 1–1.5 microns: Nonlinearity and dispersion trade offs Ph.D. dissertation Faculty Eng., Sci. Math., Univ. SouthamptonSouthamptonU.K. (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.