Abstract

We report the design and the fabrication of an anticoupling structure allowing to bring close waveguides without inducing evanescent coupling between them. This method, inspired from a well-known phenomenon of quantum physics, consists in the introduction of a periodic perturbation of the waveguide structure. The aim is to optimize the relative position of the waveguides to the electrodes so as to increase the electro-optical overlaps, in particular in lithium niobate integrated modulator (LiNbO<sub>3</sub>).

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, D. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Topics Quantum Electron. 6, 69-82 (2000).
  2. G. L. Li, P. K. L. Yu, "Optical intensity modulators for digital and analog applications," J. Lightw. Technol. 21, 2010-2030 (2003) Invited Tutorial.
  3. O.-P. Pohjola, Optical Control Element World Patent WO 2006/106807.
  4. H. Haga, M. Izutsu, T. Sueta, "LiNbO$_3$ traveling-wave light modulator/switch with an etched groove," IEEE Quantum Electron. QE-22, 902-906 (1986).
  5. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).
  6. A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE Quantum Electron. QE-9, 919-933 (1973).
  7. S. Longhi, "Coherent destruction tunnelling in waveguide directional couplers," Phys. Rev. A 71, 065801 (2005).
  8. S. Longhi, D. Janner, M. Marano, P. Laporta, "Quantum-mechanical analogy of beam propagation in waveguides with a bent axis: Dynamic-mode stabilization and radiation-loss suppression," Phys. Rev. E 67, 036601 (2003).
  9. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Quantum Electron. QE-6, 150-160 (2000).
  10. H. Kogelnik, R. Schimdt, "Switched directional couplers with alternating $\Delta \beta$," IEEE J. Quantum Electron. QE-12, 396-401 (1976).
  11. H. C. Cheng, R. Ramaswamy, "Determination of the coupling length in directional couplers from spectral response," IEEE Photon. Technol. Lett. 2, 823-825 (1990).
  12. P. G. Suchoski, T. K. Findakly, F. J. Leonberger, "Stable low-loss proton exchanged LiNbO$_3$ waveguide devices with no electro-optic degradation," Opt. Lett. 13, 1050-1052 (1988).
  13. C. Kim, R. Ramaswamy, "Overlap integral factors in integrated optic modulators and swiches," J. Lightw. Technol. 7, 1063-1070 (1989).
  14. Y. K. Wu, W. S. Wang, "Design and fabrication of sidewalls-extended electrode configuration for ridged lithium niobate electrooptical modulator," J. Lightw. Technol. 26, 286-290 (2008).

2008 (1)

Y. K. Wu, W. S. Wang, "Design and fabrication of sidewalls-extended electrode configuration for ridged lithium niobate electrooptical modulator," J. Lightw. Technol. 26, 286-290 (2008).

2005 (1)

S. Longhi, "Coherent destruction tunnelling in waveguide directional couplers," Phys. Rev. A 71, 065801 (2005).

2003 (2)

S. Longhi, D. Janner, M. Marano, P. Laporta, "Quantum-mechanical analogy of beam propagation in waveguides with a bent axis: Dynamic-mode stabilization and radiation-loss suppression," Phys. Rev. E 67, 036601 (2003).

G. L. Li, P. K. L. Yu, "Optical intensity modulators for digital and analog applications," J. Lightw. Technol. 21, 2010-2030 (2003) Invited Tutorial.

2000 (2)

R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Quantum Electron. QE-6, 150-160 (2000).

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, D. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Topics Quantum Electron. 6, 69-82 (2000).

1990 (1)

H. C. Cheng, R. Ramaswamy, "Determination of the coupling length in directional couplers from spectral response," IEEE Photon. Technol. Lett. 2, 823-825 (1990).

1989 (1)

C. Kim, R. Ramaswamy, "Overlap integral factors in integrated optic modulators and swiches," J. Lightw. Technol. 7, 1063-1070 (1989).

1988 (1)

1986 (1)

H. Haga, M. Izutsu, T. Sueta, "LiNbO$_3$ traveling-wave light modulator/switch with an etched groove," IEEE Quantum Electron. QE-22, 902-906 (1986).

1976 (1)

H. Kogelnik, R. Schimdt, "Switched directional couplers with alternating $\Delta \beta$," IEEE J. Quantum Electron. QE-12, 396-401 (1976).

1973 (1)

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE Quantum Electron. QE-9, 919-933 (1973).

IEEE J. Quantum Electron. (2)

R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Quantum Electron. QE-6, 150-160 (2000).

H. Kogelnik, R. Schimdt, "Switched directional couplers with alternating $\Delta \beta$," IEEE J. Quantum Electron. QE-12, 396-401 (1976).

IEEE J. Sel. Topics Quantum Electron. (1)

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, D. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Topics Quantum Electron. 6, 69-82 (2000).

IEEE Photon. Technol. Lett. (1)

H. C. Cheng, R. Ramaswamy, "Determination of the coupling length in directional couplers from spectral response," IEEE Photon. Technol. Lett. 2, 823-825 (1990).

IEEE Quantum Electron. (2)

H. Haga, M. Izutsu, T. Sueta, "LiNbO$_3$ traveling-wave light modulator/switch with an etched groove," IEEE Quantum Electron. QE-22, 902-906 (1986).

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE Quantum Electron. QE-9, 919-933 (1973).

J. Lightw. Technol. (3)

C. Kim, R. Ramaswamy, "Overlap integral factors in integrated optic modulators and swiches," J. Lightw. Technol. 7, 1063-1070 (1989).

Y. K. Wu, W. S. Wang, "Design and fabrication of sidewalls-extended electrode configuration for ridged lithium niobate electrooptical modulator," J. Lightw. Technol. 26, 286-290 (2008).

G. L. Li, P. K. L. Yu, "Optical intensity modulators for digital and analog applications," J. Lightw. Technol. 21, 2010-2030 (2003) Invited Tutorial.

Opt. Lett. (1)

Phys. Rev. A (1)

S. Longhi, "Coherent destruction tunnelling in waveguide directional couplers," Phys. Rev. A 71, 065801 (2005).

Phys. Rev. E (1)

S. Longhi, D. Janner, M. Marano, P. Laporta, "Quantum-mechanical analogy of beam propagation in waveguides with a bent axis: Dynamic-mode stabilization and radiation-loss suppression," Phys. Rev. E 67, 036601 (2003).

Other (2)

O.-P. Pohjola, Optical Control Element World Patent WO 2006/106807.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.