Abstract

This study demonstrates the theoretical operation of an all-optical silica fiber isolator using stimulated Brillouin scattering. Two pump sources that copropagate through a double-mode fiber generate acoustic waves through electrostriction. These acoustic waves then induce unidirectional interband optical transitions between a separate pair of signal sources. With 1 W of total input pump power, complete optical isolation is achieved with a silica rod waveguide of radius 0.67 μm over a length of approximately 12 m, with pumps operating at a wavelength of 1.55 μm and signals at 1.50 μm.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. M. Soljačić, J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3, 211-219 (2004).
  2. L. J. Aplet, J. W. Carson, "A Faraday effect optical isolator," Appl. Opt. 3, 544-545 (1964).
  3. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
  4. K. Gallo, G. Assanto, K. R. Parameswaran, M. M. Fejer, "All-optical diode in a periodically poled lithium niobate waveguide," Appl. Phys. Lett. 79, 314-316 (2001).
  5. S. K. Ibrahim, S. Bhandare, D. Sandel, H. Zhang, R. Noé, "Nonmagnetic 30 dB integrated optical isolator in III/V material," Electron. Lett. 40, 1293-1294 (2004).
  6. Z. Yu, S. Fan, "Complete optical isolation created by indirect interband photonic transitions," Nat. Photon. 3, 91-94 (2009).
  7. Z. Yu, S. Fan, "Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions," Appl. Phys. Lett. 94, 171116-1-171116-3 (2009).
  8. Z. Yu, S. Fan, "Integrated nonmagnetic optical isolators based on photonic transitions (invited paper)," IEEE J. Sel. Topics Quantum Electron. 16, 459-466 (2010).
  9. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  10. U. S. Inan, A. S. Inan, Engineering Electromagnetics (Addison-Wesley, 1999).
  11. M. S. Kang, A. Nazarkin, A. Brenn, P. S. J. Russell, "Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators," Nat. Phys. 5, 276-280 (2009).
  12. C. R. Pollock, Fundamentals of Optoelectronics (Irwin, 1994).
  13. B. A. Auld, Acoustic Fields and Waves in Solids (Robert E. Krieger Publishing Co., 1990).
  14. E. Peral, A. Yariv, "Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering," IEEE J. Quantum Electron. 35, 1185-1195 (1999).
  15. L. Thévenaz, "Fibre distributed sensing for a more secure society," Proc. Symp. Photon. Technol. 7th Framework Program (2006) pp. 43-51.
  16. W. V. Sorin, B. Y. Kim, H. J. Shaw, "Highly selective evanescent modal filter for two-mode optical fibers," Opt. Lett. 11, 581-583 (1986).
  17. R. W. Boyd, K. Rzążewski, P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).
  18. P. Narum, A. L. Gaeta, M. D. Skeldon, R. W. Boyd, "Instabilities of laser beams counterpropagating through a Brillouin-active medium," J. Opt. Soc. Amer. B 5, 623-628 (1988).

2010 (1)

Z. Yu, S. Fan, "Integrated nonmagnetic optical isolators based on photonic transitions (invited paper)," IEEE J. Sel. Topics Quantum Electron. 16, 459-466 (2010).

2009 (3)

M. S. Kang, A. Nazarkin, A. Brenn, P. S. J. Russell, "Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators," Nat. Phys. 5, 276-280 (2009).

Z. Yu, S. Fan, "Complete optical isolation created by indirect interband photonic transitions," Nat. Photon. 3, 91-94 (2009).

Z. Yu, S. Fan, "Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions," Appl. Phys. Lett. 94, 171116-1-171116-3 (2009).

2004 (3)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).

M. Soljačić, J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3, 211-219 (2004).

S. K. Ibrahim, S. Bhandare, D. Sandel, H. Zhang, R. Noé, "Nonmagnetic 30 dB integrated optical isolator in III/V material," Electron. Lett. 40, 1293-1294 (2004).

2001 (1)

K. Gallo, G. Assanto, K. R. Parameswaran, M. M. Fejer, "All-optical diode in a periodically poled lithium niobate waveguide," Appl. Phys. Lett. 79, 314-316 (2001).

1999 (1)

E. Peral, A. Yariv, "Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering," IEEE J. Quantum Electron. 35, 1185-1195 (1999).

1990 (1)

R. W. Boyd, K. Rzążewski, P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).

1988 (1)

P. Narum, A. L. Gaeta, M. D. Skeldon, R. W. Boyd, "Instabilities of laser beams counterpropagating through a Brillouin-active medium," J. Opt. Soc. Amer. B 5, 623-628 (1988).

1986 (1)

1964 (1)

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Z. Yu, S. Fan, "Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions," Appl. Phys. Lett. 94, 171116-1-171116-3 (2009).

K. Gallo, G. Assanto, K. R. Parameswaran, M. M. Fejer, "All-optical diode in a periodically poled lithium niobate waveguide," Appl. Phys. Lett. 79, 314-316 (2001).

Electron. Lett. (1)

S. K. Ibrahim, S. Bhandare, D. Sandel, H. Zhang, R. Noé, "Nonmagnetic 30 dB integrated optical isolator in III/V material," Electron. Lett. 40, 1293-1294 (2004).

IEEE J. Quantum Electron. (1)

E. Peral, A. Yariv, "Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering," IEEE J. Quantum Electron. 35, 1185-1195 (1999).

IEEE J. Sel. Topics Quantum Electron. (1)

Z. Yu, S. Fan, "Integrated nonmagnetic optical isolators based on photonic transitions (invited paper)," IEEE J. Sel. Topics Quantum Electron. 16, 459-466 (2010).

J. Opt. Soc. Amer. B (1)

P. Narum, A. L. Gaeta, M. D. Skeldon, R. W. Boyd, "Instabilities of laser beams counterpropagating through a Brillouin-active medium," J. Opt. Soc. Amer. B 5, 623-628 (1988).

Nat. Mater. (1)

M. Soljačić, J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3, 211-219 (2004).

Nat. Photon. (1)

Z. Yu, S. Fan, "Complete optical isolation created by indirect interband photonic transitions," Nat. Photon. 3, 91-94 (2009).

Nat. Phys. (1)

M. S. Kang, A. Nazarkin, A. Brenn, P. S. J. Russell, "Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators," Nat. Phys. 5, 276-280 (2009).

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).

Opt. Lett. (1)

Phys. Rev. A (1)

R. W. Boyd, K. Rzążewski, P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).

Other (5)

L. Thévenaz, "Fibre distributed sensing for a more secure society," Proc. Symp. Photon. Technol. 7th Framework Program (2006) pp. 43-51.

C. R. Pollock, Fundamentals of Optoelectronics (Irwin, 1994).

B. A. Auld, Acoustic Fields and Waves in Solids (Robert E. Krieger Publishing Co., 1990).

R. W. Boyd, Nonlinear Optics (Academic, 2003).

U. S. Inan, A. S. Inan, Engineering Electromagnetics (Addison-Wesley, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.