Abstract

We propose and theoretically analyze a novel transmitter emitting <i>m</i> wavelength-division multiplexed and independently modulated optical signals. The transmitter is based on an extended cavity formed by <i>m</i> wavelength-agnostic reflective semiconductor optical amplifiers (one for each wavelength) on one end and a single modulation-averaging reflector on the other end of the cavity. We show that optimally designed modulation-averaging reflectors can efficiently change the intensity probability density function from bound bit-stream modulation to a normal distribution and thereby improve signal-to-noise ratio of all emitted optical signals. This improvement may potentially allow the realization of cost-efficient wavelength division multiplexing passive optical networks (WDM-PON).

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription