Abstract

We report signal amplification and output signal-to-noise ratio (SNR) for simultaneous four-channel amplification at C-band in the new type of erbium-doped fiber (EDF) having core glass compositions of zirconia-yttria-alumino-phospho-silicate (EDF-I). Performance of EDF-I is compared with two mostly used EDFs having core glass compositions of alumino-silicate (EDF-II) and germino-alumino-silicate (EDF-III). EDF-I produces the best result of maximum gain difference <2 dB with output SNR of > 22 dB at input signal level of -30 dB·m/channel amplification.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. D. R. Zimmerman, H. S. Spiekmann, "Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications," J. Lightw. Technol. 22, 63-67 (2004).
  2. M. Rochette, M. Guy, J. Lauzon, S. LaRochelle, F. Trepanier, "High-performance optical amplifier for WDM communication systems," Proc. Int. Conf. Appl. Photon. Technol. (1998) pp. 611-616.
  3. H. S. Kim, S. H. Yun, H. K. Kim, N. Park, B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acousto-optic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
  4. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, "Long-period fiber-grating-based gain equalizers," Opt. Lett. 21, 336-338 (1996).
  5. M. Pal, S. Bandyapadhyay, P. Biswas, R. Debroy, M. Paul, R. Sen, K. Dasgupta, S. Bhadra, "Study of gain flatness for multi-channel amplification in single stage EDFA for WDM applications," Opt. Quantum Electron. 39, 1231-1243 (2007).
  6. B. S. Wang, G. Puc, R. Osnato, B. Palsdottir, "Characterization of gain spectral variation of erbium-doped fibers codoped with aluminum," Proc. SPIE Asia Pacific Opt. Commun. (2003) pp. 161-166.
  7. M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimuzu, S. Sudo, K. Sagawa, "Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum," IEEE Photon. Technol. Lett. 8, 882-884 (1996).
  8. A. Jha, S. Shen, S. Naftaly, "Structural origin of spectral broadening of 1.5-$\mu$m emission in Er$^{3+}$-doped tellurite glasses," Phys. Rev. B 62, 6215-6227 (2000).
  9. X. S. Chang, R. Parvizi, H. Ahmad, S. W. Harun, "Wide-band bismuth-based erbium-doped fibre amplifier with a flat-gain characteristics," IEEE Photon. J. 1, 259-264 (2009).
  10. M. C. Paul, S. W. Harun, N. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, J. K. Sahu, "Performance comparison of Zr-based and bibased erbium-doped fiber amplifiers," Opt. Lett. 35, 2882-2884 (2010).
  11. M. C. Paul, S. W. Harun, N. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, J. K. Sahu, "Wideband EDFA based on erbium doped crystalline zirconia yttria alumino silicate fiber," J. Lightw. Technol. 28, 2919-2924 (2010).
  12. B. L. Kirsch, S. H. Tolbert, "Stabilization of isolated hydrous amorphous and tetragonal zirconia nanoparticles through the formation of a passivating alumina shell," J. Adv. Funct. Mater. 13, 281-288 (2003).
  13. A. Patra, C. S. Friend, R. Kapoor, P. N. Prasad, "Upconversion in Er$^{3 +}$:ZrO$_{2}$ Nanocrystals," J. Phys. Chem. B 106, 1909-1912 (2002).
  14. K. Aiso, Y. Tashiro, T. Suzuki, T. Yagi, "Development of Er/Yb co-doped fiber for high-power optical amplifiers," Furukawa Rev. 106, 41-45 (2001).

2010

M. C. Paul, S. W. Harun, N. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, J. K. Sahu, "Wideband EDFA based on erbium doped crystalline zirconia yttria alumino silicate fiber," J. Lightw. Technol. 28, 2919-2924 (2010).

M. C. Paul, S. W. Harun, N. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, J. K. Sahu, "Performance comparison of Zr-based and bibased erbium-doped fiber amplifiers," Opt. Lett. 35, 2882-2884 (2010).

2009

X. S. Chang, R. Parvizi, H. Ahmad, S. W. Harun, "Wide-band bismuth-based erbium-doped fibre amplifier with a flat-gain characteristics," IEEE Photon. J. 1, 259-264 (2009).

2007

M. Pal, S. Bandyapadhyay, P. Biswas, R. Debroy, M. Paul, R. Sen, K. Dasgupta, S. Bhadra, "Study of gain flatness for multi-channel amplification in single stage EDFA for WDM applications," Opt. Quantum Electron. 39, 1231-1243 (2007).

2004

D. R. Zimmerman, H. S. Spiekmann, "Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications," J. Lightw. Technol. 22, 63-67 (2004).

2003

B. L. Kirsch, S. H. Tolbert, "Stabilization of isolated hydrous amorphous and tetragonal zirconia nanoparticles through the formation of a passivating alumina shell," J. Adv. Funct. Mater. 13, 281-288 (2003).

2002

A. Patra, C. S. Friend, R. Kapoor, P. N. Prasad, "Upconversion in Er$^{3 +}$:ZrO$_{2}$ Nanocrystals," J. Phys. Chem. B 106, 1909-1912 (2002).

2001

K. Aiso, Y. Tashiro, T. Suzuki, T. Yagi, "Development of Er/Yb co-doped fiber for high-power optical amplifiers," Furukawa Rev. 106, 41-45 (2001).

2000

A. Jha, S. Shen, S. Naftaly, "Structural origin of spectral broadening of 1.5-$\mu$m emission in Er$^{3+}$-doped tellurite glasses," Phys. Rev. B 62, 6215-6227 (2000).

1998

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acousto-optic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).

1996

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, "Long-period fiber-grating-based gain equalizers," Opt. Lett. 21, 336-338 (1996).

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimuzu, S. Sudo, K. Sagawa, "Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum," IEEE Photon. Technol. Lett. 8, 882-884 (1996).

Furukawa Rev.

K. Aiso, Y. Tashiro, T. Suzuki, T. Yagi, "Development of Er/Yb co-doped fiber for high-power optical amplifiers," Furukawa Rev. 106, 41-45 (2001).

IEEE Photon. J.

X. S. Chang, R. Parvizi, H. Ahmad, S. W. Harun, "Wide-band bismuth-based erbium-doped fibre amplifier with a flat-gain characteristics," IEEE Photon. J. 1, 259-264 (2009).

IEEE Photon. Technol. Lett.

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimuzu, S. Sudo, K. Sagawa, "Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum," IEEE Photon. Technol. Lett. 8, 882-884 (1996).

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acousto-optic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).

J. Adv. Funct. Mater.

B. L. Kirsch, S. H. Tolbert, "Stabilization of isolated hydrous amorphous and tetragonal zirconia nanoparticles through the formation of a passivating alumina shell," J. Adv. Funct. Mater. 13, 281-288 (2003).

J. Lightw. Technol.

D. R. Zimmerman, H. S. Spiekmann, "Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications," J. Lightw. Technol. 22, 63-67 (2004).

M. C. Paul, S. W. Harun, N. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, J. K. Sahu, "Wideband EDFA based on erbium doped crystalline zirconia yttria alumino silicate fiber," J. Lightw. Technol. 28, 2919-2924 (2010).

J. Phys. Chem. B

A. Patra, C. S. Friend, R. Kapoor, P. N. Prasad, "Upconversion in Er$^{3 +}$:ZrO$_{2}$ Nanocrystals," J. Phys. Chem. B 106, 1909-1912 (2002).

Opt. Lett.

Opt. Quantum Electron.

M. Pal, S. Bandyapadhyay, P. Biswas, R. Debroy, M. Paul, R. Sen, K. Dasgupta, S. Bhadra, "Study of gain flatness for multi-channel amplification in single stage EDFA for WDM applications," Opt. Quantum Electron. 39, 1231-1243 (2007).

Phys. Rev. B

A. Jha, S. Shen, S. Naftaly, "Structural origin of spectral broadening of 1.5-$\mu$m emission in Er$^{3+}$-doped tellurite glasses," Phys. Rev. B 62, 6215-6227 (2000).

Other

B. S. Wang, G. Puc, R. Osnato, B. Palsdottir, "Characterization of gain spectral variation of erbium-doped fibers codoped with aluminum," Proc. SPIE Asia Pacific Opt. Commun. (2003) pp. 161-166.

M. Rochette, M. Guy, J. Lauzon, S. LaRochelle, F. Trepanier, "High-performance optical amplifier for WDM communication systems," Proc. Int. Conf. Appl. Photon. Technol. (1998) pp. 611-616.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.