Abstract

Fiber optic Fabry–Perot sensors are commonly interrogated by spectral interferometric measurement of optical path difference (OPD). Spurious jumps in sensor output, previously attributed to noise, are often observed in OPD-based measurements. Through analysis and experimentation based on intrinsic Fabry–Perot interferometric (IFPI) sensors, we show that these discontinuities are actually caused by a time-varying interferogram phase term. We identify several physical causes for varying initial phase and derive a threshold value at which it begins to cause errors in the sensor output. Finally, we present a total phase measurement method as an alternative to OPD-based techniques to reduce the occurrence of output signal jumps.

© 2011 USGov

PDF Article

References

  • View by:
  • |
  • |

  1. D. Kersey, M. J. Marrone, "Bragg grating based nested fibre interferometers," Electron. Lett. 32, 1221-3 (1996).
  2. T. Rossmanith, X. D. Jin, J. S. Sirkis, M. K. Park, V. Venkat, B. D. Prasad, "Manufacturing of core mirrors for intrinsic Fabry–Perot interferometers using sol-gel process," Proc. SPIE (1999) pp. 34-40.
  3. Z. Huang, Y. Zhu, X. Chen, A. Wang, "Intrinsic Fabry–Perot fiber sensor for temperature and strain measurements," IEEE Photon. Technol. Lett. 17, 2403-2405 (2005).
  4. X. Chen, F. Shen, Z. Wang, Z. Huang, A. Wang, "Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor," Appl. Opt. 45, 7760-6 (2006).
  5. C. Ma, N. Wang, E. Lally, A. Wang, "Intrinsic Fabry–Perot interferometric (IFPI) fiber pressure sensor," Proc. SPIE (2010) pp. 76770T1-76770T9.
  6. S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, "Digital signal-processing techniques for electronically scanned optical-fiber white-light interferometry," Appl. Opt. 31, 6003-10 (1992).
  7. B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, "Novel data processing techniques for dispersive white light interferometer. Optical engineering," Opt. Eng. 42, 3165-71 (2003).
  8. F. Shen, A. Wang, "Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry–Perot interferometers," Appl. Opt. 44, 5206-14 (2005).
  9. Y. Jiang, "High-resolution interrogation technique for fiber optic extrinsic Fabry–Perot interferometric sensors by the peak-to-peak method," Appl. Opt. 47, 925-932 (2008).
  10. M. Han, Y. Zhang, F. Shen, G. R. Pickrell, A. Wang, "Signal-processing algorithm for white-light optical fiber extrinsic Fabry–Perot interferometric sensors," Optics Letters 29, 1736-8 (2004).
  11. C. Ma, A. Wang, "Multimode excitation-induced phase shifts in intrinsic Fabry–Perot interferometric fiber sensor spectra," Appl. Opt. 49, 4836-4845 (2010).
  12. S. A. Tretter, "Estimating the frequency of a noisy sinusoid by linear regression," IEEE Trans. Inf. Theory IT-31, 832-835 (1985).

2010 (1)

2008 (1)

2006 (1)

2005 (2)

Z. Huang, Y. Zhu, X. Chen, A. Wang, "Intrinsic Fabry–Perot fiber sensor for temperature and strain measurements," IEEE Photon. Technol. Lett. 17, 2403-2405 (2005).

F. Shen, A. Wang, "Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry–Perot interferometers," Appl. Opt. 44, 5206-14 (2005).

2004 (1)

M. Han, Y. Zhang, F. Shen, G. R. Pickrell, A. Wang, "Signal-processing algorithm for white-light optical fiber extrinsic Fabry–Perot interferometric sensors," Optics Letters 29, 1736-8 (2004).

2003 (1)

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, "Novel data processing techniques for dispersive white light interferometer. Optical engineering," Opt. Eng. 42, 3165-71 (2003).

1996 (1)

D. Kersey, M. J. Marrone, "Bragg grating based nested fibre interferometers," Electron. Lett. 32, 1221-3 (1996).

1992 (1)

1985 (1)

S. A. Tretter, "Estimating the frequency of a noisy sinusoid by linear regression," IEEE Trans. Inf. Theory IT-31, 832-835 (1985).

Appl. Opt. (5)

Electron. Lett. (1)

D. Kersey, M. J. Marrone, "Bragg grating based nested fibre interferometers," Electron. Lett. 32, 1221-3 (1996).

IEEE Trans. Inf. Theory (1)

S. A. Tretter, "Estimating the frequency of a noisy sinusoid by linear regression," IEEE Trans. Inf. Theory IT-31, 832-835 (1985).

IEEE Photon. Technol. Lett. (1)

Z. Huang, Y. Zhu, X. Chen, A. Wang, "Intrinsic Fabry–Perot fiber sensor for temperature and strain measurements," IEEE Photon. Technol. Lett. 17, 2403-2405 (2005).

Opt. Eng. (1)

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, "Novel data processing techniques for dispersive white light interferometer. Optical engineering," Opt. Eng. 42, 3165-71 (2003).

Optics Letters (1)

M. Han, Y. Zhang, F. Shen, G. R. Pickrell, A. Wang, "Signal-processing algorithm for white-light optical fiber extrinsic Fabry–Perot interferometric sensors," Optics Letters 29, 1736-8 (2004).

Other (2)

T. Rossmanith, X. D. Jin, J. S. Sirkis, M. K. Park, V. Venkat, B. D. Prasad, "Manufacturing of core mirrors for intrinsic Fabry–Perot interferometers using sol-gel process," Proc. SPIE (1999) pp. 34-40.

C. Ma, N. Wang, E. Lally, A. Wang, "Intrinsic Fabry–Perot interferometric (IFPI) fiber pressure sensor," Proc. SPIE (2010) pp. 76770T1-76770T9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.