Abstract

In this report, we demonstrate multi-functional light emitter based on band-edge modes near $\Gamma$-point in a two-dimensional honeycomb photonic crystal slab. Different band-edge modes near $\Gamma$-point are identified, including the monopole $(\Gamma_{2})$, dipole $(\Gamma _{4, 5})$, and quadrupole $(\Gamma _{6, 7})$ modes. The monopole and quadrupole modes lasing are observed with high side-mode suppression-ratio of 35 dB and high index sensitivity of 375 nm per refractive index unit, which shows their potential in optical micro-laser and index sensor applications. Over five-fold photoluminescence enhancement with broad band-width of 100 nm from the dipole mode is also observed at room temperature, which shows the advantage of honeycomb lattice structure for designing high brightness light emitting diodes.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription