Abstract

Different optical filtering scenarios involving microwave photonic phase shifters based on semiconductor optical amplifiers are investigated numerically as well as experimentally with respect to noise performance. Investigations on the role of the modulation depth and number of elements in cascaded shifting stages are also carried out. Suppression of the noise level by more than 5 dB has been achieved in schemes based on band-pass optical filtering when three phase shifting stages are cascaded.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. R. W. Boyd, D. J. Gauthier, "Controlling the velocity of light pulses," Science 326, 1074-1077 (2009).
  2. R. W. Boyd, D. J. Gauthier, "Slow and fast light," Prog. Opt. 43, 497-530 (2002).
  3. J. Capmany, D. Novak, "Microwave photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
  4. J. Capmany, B. Ortega, D. Pastor, "A Tutorial on microwave photonic filters," J. Lightw. Technol. 24, 201-229 (2006).
  5. D. Dolfi, P. Joffre, J. Antoine, J.-P. Huignard, D. Philippet, P. Granger, "Experimental demonstration of a phased-array antenna optically controlled with phase and time delays," Appl. Opt. 35, 5293-5300 (1996).
  6. C. Weil, S. Müller, P. Scheele, Y. Krivoshapka, P. Best, G. Lüssem, R. Jakoby, "Ferroelectric- and liquid crystal-tunable microwave phase shifter," Proc. 33rd Eur. Microw. Conf. (2003) pp. 1431-1434.
  7. J. Capmany, B. Ortega, D. Pastor, S. Sales, "Discrete-time optical processing of microwave signals," J. Lightw. Technol. 23, 702-723 (2005).
  8. L. Thévenaz, "Slow and fast light in optical fibers," Nature Photon. 2, 474-481 (2008).
  9. T. Baba, "Slow light in photonic crystals," Nature Photon. 2, 465-473 (2008).
  10. C. J. Chang, S. L. Chuang, "Slow and fast light in semiconductor quantum well and quantum-dot devices," J. Lightw. Technol. 24, 4642-4654 (2006).
  11. W. Xue, S. Sales, J. Capmany, J. Mork, "Wideband 360$^{\circ}$ microwave photonic phase shifter based on slow light in semiconductor optical amplifiers," Opt. Exp. 18, 6156-6163 (2010).
  12. J. Mork, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, T. R. Nielsen, "Slow and fast light in semiconductor waveguide," Semicond. Sci. Technol. 25, (2010).
  13. J. Mork, R. Kjær, M. Van der Poel, K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Exp. 13, 8136-8145 (2005).
  14. W. Xue, Y. Chen, F. Öhman, S. Sales, J. Mork, "Enhancing light slow-down in semiconductor optical amplifiers by optical filtering," Opt. Lett. 33, 1084-1086 (2008).
  15. E. Shumakher, S. Ó. Dúill, G. Eisenstein, "Signal-to-noise ratio of a semiconductor-optical-amplifier-based optical phase shifter," Opt. Lett. 34, 1940-1942 (2009).
  16. C. Cox, Analog Optical Links (Cambridge Univ. Press, 2004).
  17. J. Lloret, F. Ramos, J. Sancho, I. Gasulla, S. Sales, J. Capmany, "Noise spectrum characterization of slow light SOA-based microwave photonic phase shifters," Photon. Technol. Lett. 22, 1005-1007 (2010).
  18. S. Ó. Dúill, E. Shumakher, G. Eisenstein, "Noise properties of microwave phase shifters based on semiconductor optical amplifiers," J. Lightw. Technol. 28, 791-797 (2010).
  19. I. Gasulla, J. Sancho, J. Lloret, S. Sales, J. Capmany, "Harmonic distortion in microwave photonic phase shifters based on coherent population oscillations in SOAs," Photon. Technol. Lett. 22, 899-901 (2010).
  20. P. Berger, J. Bourderionnet, M. Alouini, F. Bretenaker, D. Dolfi, "Theoretical study of the spurious-free dynamic range of a tunable delay line based on slow light in SOA," Opt. Exp. 17, 20584-20597 (2009).
  21. M. Shtaif, B. Tromborg, G. Eisenstein, "Noise spectra of semiconductor optical amplifiers: Relation between semiclassical and quantum descriptions," IEEE J. Quantum Electron. 34, 869-878 (1998).
  22. B. J. Eggleton, G. Lenz, N. Litchinitser, D. B. Patterson, R. E. Slusher, "Implications of fiber grating dispersion for WDM communications systems," Photon. Technol. Lett. 9, 1403-1405 (1997).
  23. J. Capmany, D. Pastor, B. Ortega, "RIN induced by out-band dispersion in fibre Bragg grating based add-drop multiplexers," Electron. Lett. 35, 2220-2221 (1999).
  24. S. Ó. Dúill, E. Shumakher, G. Eisenstein, "The role of optical filtering in microwave phase shifting," Opt. Lett. 35, 2278-2280 (2010).
  25. S. Ó. Dúill, E. Shumakher, G. Eisenstein, "Large-signal operation of a semiconductor optical amplifier as a phase-shifting element for microwave signals," Photon. Technol. Lett. 21, 679-681 (2009).

2010 (6)

W. Xue, S. Sales, J. Capmany, J. Mork, "Wideband 360$^{\circ}$ microwave photonic phase shifter based on slow light in semiconductor optical amplifiers," Opt. Exp. 18, 6156-6163 (2010).

J. Mork, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, T. R. Nielsen, "Slow and fast light in semiconductor waveguide," Semicond. Sci. Technol. 25, (2010).

J. Lloret, F. Ramos, J. Sancho, I. Gasulla, S. Sales, J. Capmany, "Noise spectrum characterization of slow light SOA-based microwave photonic phase shifters," Photon. Technol. Lett. 22, 1005-1007 (2010).

S. Ó. Dúill, E. Shumakher, G. Eisenstein, "Noise properties of microwave phase shifters based on semiconductor optical amplifiers," J. Lightw. Technol. 28, 791-797 (2010).

I. Gasulla, J. Sancho, J. Lloret, S. Sales, J. Capmany, "Harmonic distortion in microwave photonic phase shifters based on coherent population oscillations in SOAs," Photon. Technol. Lett. 22, 899-901 (2010).

S. Ó. Dúill, E. Shumakher, G. Eisenstein, "The role of optical filtering in microwave phase shifting," Opt. Lett. 35, 2278-2280 (2010).

2009 (4)

E. Shumakher, S. Ó. Dúill, G. Eisenstein, "Signal-to-noise ratio of a semiconductor-optical-amplifier-based optical phase shifter," Opt. Lett. 34, 1940-1942 (2009).

P. Berger, J. Bourderionnet, M. Alouini, F. Bretenaker, D. Dolfi, "Theoretical study of the spurious-free dynamic range of a tunable delay line based on slow light in SOA," Opt. Exp. 17, 20584-20597 (2009).

R. W. Boyd, D. J. Gauthier, "Controlling the velocity of light pulses," Science 326, 1074-1077 (2009).

S. Ó. Dúill, E. Shumakher, G. Eisenstein, "Large-signal operation of a semiconductor optical amplifier as a phase-shifting element for microwave signals," Photon. Technol. Lett. 21, 679-681 (2009).

2008 (3)

L. Thévenaz, "Slow and fast light in optical fibers," Nature Photon. 2, 474-481 (2008).

T. Baba, "Slow light in photonic crystals," Nature Photon. 2, 465-473 (2008).

W. Xue, Y. Chen, F. Öhman, S. Sales, J. Mork, "Enhancing light slow-down in semiconductor optical amplifiers by optical filtering," Opt. Lett. 33, 1084-1086 (2008).

2007 (1)

J. Capmany, D. Novak, "Microwave photonics combines two worlds," Nature Photon. 1, 319-330 (2007).

2006 (2)

J. Capmany, B. Ortega, D. Pastor, "A Tutorial on microwave photonic filters," J. Lightw. Technol. 24, 201-229 (2006).

C. J. Chang, S. L. Chuang, "Slow and fast light in semiconductor quantum well and quantum-dot devices," J. Lightw. Technol. 24, 4642-4654 (2006).

2005 (2)

J. Mork, R. Kjær, M. Van der Poel, K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Exp. 13, 8136-8145 (2005).

J. Capmany, B. Ortega, D. Pastor, S. Sales, "Discrete-time optical processing of microwave signals," J. Lightw. Technol. 23, 702-723 (2005).

2002 (1)

R. W. Boyd, D. J. Gauthier, "Slow and fast light," Prog. Opt. 43, 497-530 (2002).

1999 (1)

J. Capmany, D. Pastor, B. Ortega, "RIN induced by out-band dispersion in fibre Bragg grating based add-drop multiplexers," Electron. Lett. 35, 2220-2221 (1999).

1998 (1)

M. Shtaif, B. Tromborg, G. Eisenstein, "Noise spectra of semiconductor optical amplifiers: Relation between semiclassical and quantum descriptions," IEEE J. Quantum Electron. 34, 869-878 (1998).

1997 (1)

B. J. Eggleton, G. Lenz, N. Litchinitser, D. B. Patterson, R. E. Slusher, "Implications of fiber grating dispersion for WDM communications systems," Photon. Technol. Lett. 9, 1403-1405 (1997).

1996 (1)

Appl. Opt. (1)

Electron. Lett. (1)

J. Capmany, D. Pastor, B. Ortega, "RIN induced by out-band dispersion in fibre Bragg grating based add-drop multiplexers," Electron. Lett. 35, 2220-2221 (1999).

IEEE J. Quantum Electron. (1)

M. Shtaif, B. Tromborg, G. Eisenstein, "Noise spectra of semiconductor optical amplifiers: Relation between semiclassical and quantum descriptions," IEEE J. Quantum Electron. 34, 869-878 (1998).

J. Lightw. Technol. (1)

C. J. Chang, S. L. Chuang, "Slow and fast light in semiconductor quantum well and quantum-dot devices," J. Lightw. Technol. 24, 4642-4654 (2006).

J. Lightw. Technol. (3)

S. Ó. Dúill, E. Shumakher, G. Eisenstein, "Noise properties of microwave phase shifters based on semiconductor optical amplifiers," J. Lightw. Technol. 28, 791-797 (2010).

J. Capmany, B. Ortega, D. Pastor, S. Sales, "Discrete-time optical processing of microwave signals," J. Lightw. Technol. 23, 702-723 (2005).

J. Capmany, B. Ortega, D. Pastor, "A Tutorial on microwave photonic filters," J. Lightw. Technol. 24, 201-229 (2006).

Nature Photon. (3)

J. Capmany, D. Novak, "Microwave photonics combines two worlds," Nature Photon. 1, 319-330 (2007).

L. Thévenaz, "Slow and fast light in optical fibers," Nature Photon. 2, 474-481 (2008).

T. Baba, "Slow light in photonic crystals," Nature Photon. 2, 465-473 (2008).

Opt. Exp. (3)

W. Xue, S. Sales, J. Capmany, J. Mork, "Wideband 360$^{\circ}$ microwave photonic phase shifter based on slow light in semiconductor optical amplifiers," Opt. Exp. 18, 6156-6163 (2010).

J. Mork, R. Kjær, M. Van der Poel, K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Exp. 13, 8136-8145 (2005).

P. Berger, J. Bourderionnet, M. Alouini, F. Bretenaker, D. Dolfi, "Theoretical study of the spurious-free dynamic range of a tunable delay line based on slow light in SOA," Opt. Exp. 17, 20584-20597 (2009).

Opt. Lett. (3)

Photon. Technol. Lett. (1)

J. Lloret, F. Ramos, J. Sancho, I. Gasulla, S. Sales, J. Capmany, "Noise spectrum characterization of slow light SOA-based microwave photonic phase shifters," Photon. Technol. Lett. 22, 1005-1007 (2010).

Photon. Technol. Lett. (1)

B. J. Eggleton, G. Lenz, N. Litchinitser, D. B. Patterson, R. E. Slusher, "Implications of fiber grating dispersion for WDM communications systems," Photon. Technol. Lett. 9, 1403-1405 (1997).

Photon. Technol. Lett. (2)

S. Ó. Dúill, E. Shumakher, G. Eisenstein, "Large-signal operation of a semiconductor optical amplifier as a phase-shifting element for microwave signals," Photon. Technol. Lett. 21, 679-681 (2009).

I. Gasulla, J. Sancho, J. Lloret, S. Sales, J. Capmany, "Harmonic distortion in microwave photonic phase shifters based on coherent population oscillations in SOAs," Photon. Technol. Lett. 22, 899-901 (2010).

Prog. Opt. (1)

R. W. Boyd, D. J. Gauthier, "Slow and fast light," Prog. Opt. 43, 497-530 (2002).

Science (1)

R. W. Boyd, D. J. Gauthier, "Controlling the velocity of light pulses," Science 326, 1074-1077 (2009).

Semicond. Sci. Technol. (1)

J. Mork, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, T. R. Nielsen, "Slow and fast light in semiconductor waveguide," Semicond. Sci. Technol. 25, (2010).

Other (2)

C. Cox, Analog Optical Links (Cambridge Univ. Press, 2004).

C. Weil, S. Müller, P. Scheele, Y. Krivoshapka, P. Best, G. Lüssem, R. Jakoby, "Ferroelectric- and liquid crystal-tunable microwave phase shifter," Proc. 33rd Eur. Microw. Conf. (2003) pp. 1431-1434.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.