Abstract

We demonstrate a novel silicon-on-insulator dual-microring resonator for sensing application. Numerical analysis shows that the Q factor of dual-microring resonator is three orders of magnitude higher than that of conventional single-ring resonator with lossless waveguide and thereby as a sensor, the resolution and minimum level of detection is enhanced greatly. For the resonance peak of inner ring, a Q value of $1.07 \times 10^{7}$ is achieved theoretically in weak coupling conditions while the sensing area is kept below 50$\,\times\,$50 $\mu$m$^{2}$. Detection limit of refractive index change of $3.85 \times 10^{-6}$ can be achieved for bulk refractive index sensing. Moreover, by enlarging bending radius of the outer ring, Q factor can be further improved. The analytical description of output spectrum response is derived. In addition, for low propagation loss waveguide, critical coupling condition of two rings and bus waveguides is obtained and it's essential for sensor device optimization.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. R. Narayanaswamy, O. S. Wolfbeis, Optical Sensors (Springer, 2004).
  2. X. Fan, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chim. Acta 620, 8-26 (2008).
  3. W. E. Moerner, "Principal-components analysis of shape fluctuations of single DNA molecules," Proc. Natl. Acad. Sci. (2007) pp. 12596.
  4. A. Densmore, "A silicon-on-insulator photonic wire based evanescent field sensor," IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
  5. G. Nemova, R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating," J. Opt. Soc. Amer. B 24, 2696-2701 (2007).
  6. S. Cho, N. M. Jokerst, "A polymer microdisk photonic sensor integrated onto silicon," IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
  7. R. W. Boyd, J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt. 40, 5742-5747 (2001).
  8. C.-Y. Chao, L. J. Guoa, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
  9. A. M. Armani, K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31, 1896-1898 (2006).
  10. A. M. Armani, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
  11. H. Yi, D. S. Citrin, Z. Zhou, "Highly sensitive silicon microring sensor with sharp asymmetrical resonance," Opt. Exp. 18, 2967-2972 (2010).
  12. G. P. Anderson, J. P. Golden, F. S. Ligler, "A fiber optic biosensor: Combination tapered fibers designed for improved signal acquisition," Biosens. Bioelectron 8, 249-256 (1993).
  13. C. Y. Chao, W. Fung, L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
  14. C. A. Barrios, "Analysis and modeling of a silicon nitride slot-waveguide microring resonator biochemical sensor," Proc. Optical Sens. 2009 7356, 735605 (2009).
  15. D. X. Xu, "Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding," Opt. Exp. 16, 15137-15148 (2008).
  16. X. Li, "Sensitive label-free and compact biosensor based on concentric silicon-on-insulator microring resonators," Appl. Opt. 48, F90-F94 (2009).
  17. D. Dai, S. He, "Highly sensitive sensor with large measurement range realized with two cascaded microring resonators," Opt. Commun. 279, 89-93 (2007).
  18. H. S. Rong, Opt. Exp. 14, 6705 (2006).
  19. M. A. Webster, R. M. Pafchek, G. Sukumaran, T. L. Koch, Appl. Phys. Lett. 87, 231108 (2005).
  20. E. A. J. Marcatili, S. E. Miller, "Improved relationships describing directional control in electromagnetic wave guidance," Bell Syst. Tech. J. 48, 2161-2188 (1969).

2010 (1)

H. Yi, D. S. Citrin, Z. Zhou, "Highly sensitive silicon microring sensor with sharp asymmetrical resonance," Opt. Exp. 18, 2967-2972 (2010).

2009 (2)

C. A. Barrios, "Analysis and modeling of a silicon nitride slot-waveguide microring resonator biochemical sensor," Proc. Optical Sens. 2009 7356, 735605 (2009).

X. Li, "Sensitive label-free and compact biosensor based on concentric silicon-on-insulator microring resonators," Appl. Opt. 48, F90-F94 (2009).

2008 (2)

D. X. Xu, "Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding," Opt. Exp. 16, 15137-15148 (2008).

X. Fan, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chim. Acta 620, 8-26 (2008).

2007 (3)

G. Nemova, R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating," J. Opt. Soc. Amer. B 24, 2696-2701 (2007).

A. M. Armani, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).

D. Dai, S. He, "Highly sensitive sensor with large measurement range realized with two cascaded microring resonators," Opt. Commun. 279, 89-93 (2007).

2006 (5)

H. S. Rong, Opt. Exp. 14, 6705 (2006).

C. Y. Chao, W. Fung, L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).

S. Cho, N. M. Jokerst, "A polymer microdisk photonic sensor integrated onto silicon," IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).

A. Densmore, "A silicon-on-insulator photonic wire based evanescent field sensor," IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).

A. M. Armani, K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31, 1896-1898 (2006).

2005 (1)

M. A. Webster, R. M. Pafchek, G. Sukumaran, T. L. Koch, Appl. Phys. Lett. 87, 231108 (2005).

2003 (1)

C.-Y. Chao, L. J. Guoa, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).

2001 (1)

1993 (1)

G. P. Anderson, J. P. Golden, F. S. Ligler, "A fiber optic biosensor: Combination tapered fibers designed for improved signal acquisition," Biosens. Bioelectron 8, 249-256 (1993).

1969 (1)

E. A. J. Marcatili, S. E. Miller, "Improved relationships describing directional control in electromagnetic wave guidance," Bell Syst. Tech. J. 48, 2161-2188 (1969).

Anal. Chim. Acta (1)

X. Fan, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chim. Acta 620, 8-26 (2008).

Appl. Phys. Lett. (1)

C.-Y. Chao, L. J. Guoa, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. A. Webster, R. M. Pafchek, G. Sukumaran, T. L. Koch, Appl. Phys. Lett. 87, 231108 (2005).

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, S. E. Miller, "Improved relationships describing directional control in electromagnetic wave guidance," Bell Syst. Tech. J. 48, 2161-2188 (1969).

Biosens. Bioelectron (1)

G. P. Anderson, J. P. Golden, F. S. Ligler, "A fiber optic biosensor: Combination tapered fibers designed for improved signal acquisition," Biosens. Bioelectron 8, 249-256 (1993).

IEEE Photon. Technol. Lett. (1)

A. Densmore, "A silicon-on-insulator photonic wire based evanescent field sensor," IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).

IEEE J. Sel. Top. Quantum Electron. (1)

C. Y. Chao, W. Fung, L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).

IEEE Photon. Technol. Lett. (1)

S. Cho, N. M. Jokerst, "A polymer microdisk photonic sensor integrated onto silicon," IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).

J. Opt. Soc. Amer. B (1)

G. Nemova, R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating," J. Opt. Soc. Amer. B 24, 2696-2701 (2007).

Opt. Commun. (1)

D. Dai, S. He, "Highly sensitive sensor with large measurement range realized with two cascaded microring resonators," Opt. Commun. 279, 89-93 (2007).

Opt. Exp. (1)

H. S. Rong, Opt. Exp. 14, 6705 (2006).

Opt. Exp. (2)

H. Yi, D. S. Citrin, Z. Zhou, "Highly sensitive silicon microring sensor with sharp asymmetrical resonance," Opt. Exp. 18, 2967-2972 (2010).

D. X. Xu, "Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding," Opt. Exp. 16, 15137-15148 (2008).

Opt. Lett. (1)

Proc. Optical Sens. 2009 (1)

C. A. Barrios, "Analysis and modeling of a silicon nitride slot-waveguide microring resonator biochemical sensor," Proc. Optical Sens. 2009 7356, 735605 (2009).

Science (1)

A. M. Armani, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).

Other (2)

R. Narayanaswamy, O. S. Wolfbeis, Optical Sensors (Springer, 2004).

W. E. Moerner, "Principal-components analysis of shape fluctuations of single DNA molecules," Proc. Natl. Acad. Sci. (2007) pp. 12596.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.