Abstract

The drift issue induces slow drifting of the optimum operating point for high efficiency or large nonlinearities in analog optical links, and requires complex control of the offset bias voltage for achieving high extinction ratio in digital optical links. We discuss and analyze the different sources of the drift in commercially LiNbO$_3$ Mach–Zehnder modulators. The different extrinsic and intrinsic origins are compared in terms of phase shift and the different corresponding orders of magnitude are given, pointing out the predominant role of the intrinsic (dc) drift. We show the large role played by the electrical inhomogeneities at the surface of the LiNbO$_3$ substrate by highlighting the link between the time dependence of the dc drift and the electrical conductivity measured at the surface and in the volume of the LiNbO$_3$ substrate. This allows to propose a solution to the drift issue which consists in the engineering of the electrical conductivity of the lithium niobate substrate.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. G. L. Li, P. K. L. Yu, "Optical intensity modulators for digital and analog applications," J. Lightw. Technol. 21, 2010-2030 (2003).
  2. H. Nagata, J. Ichikawa, "Progress and problems in reliability of TI:LiNbO$_3$ optical intensity modulators," Opt. Eng. 34, 3284-3293 (1995).
  3. S. K. Korotky, J. Veselka, "An RC network analysis of long term TI:LiNbO$_3$ bias stability," J. Lightw. Technol. 14, 2687-2697 (1996).
  4. G. E. Betts, C. H. Cox, K. G. Ray, "20 GHz optical analog link using an external modulator," IEEE Photon. Technol. Lett. 2, 923-925 (1990).
  5. N. Miyazaki, K. Ooizumi, T. Hara, M. Yamada, H. Nagata, T. Sakane, "TI:LiNbO$_3$ optical intensity modulator packaged with monitor photodiode," IEEE Photon. Technol. Lett. 13, 442-444 (2001).
  6. Technical Note, ATT Microelectronics (1995) Lithium niobate modulators.
  7. D. Maack, "Reliability of lithium niobate Mach–Zehnder modulators for digital optical fiber telecommunications systems," Proc. SPIE Crit. Rev.: Reliabil. Opt. Fibers Opt. Fibers Syst. (1999) pp. 197-230.
  8. H. Nagata, H. Honda, "Initial bias dependency in dc drift of z-cut TI:LiNbO$_3$ optical intensity modulators," Opt. Eng. 39, 1103-1105 (2000).
  9. W. Minford, "The taming of TI:LiNbO$_3$," FIO III (1999).
  10. H. Nagata, K. Kiuchi, "Temperature dependence of dc drift of TI:LiNbO$_3$ optical modulators with sputter deposited SiO$_2$ buffer layer," J. Appl. Phys. 73, 4162-4164 (1993).
  11. H. Nagata, Y. Li, I. Croston, D. R. Maack, A. Appleyard, "DC drift activation energy of TI:LiNbO$_3$ optical modulators based on thousands of hours of active accelerated aging tests," IEEE Photon. Technol. Lett. 14, 1076-1078 (2002).
  12. S. Yamada, M. Minakata, "DC drift phenomena in TI:LiNbO$_3$ optical waveguide devices," Jpn. J. Appl. Phys. 20, 733-737 (1981).
  13. R. A. Becker, "Circuit effect in TI:LiNbO$_3$ channel-waveguide modulators," Opt. Lett. 10, 417-419 (1985).
  14. H. Nagata, K. Kiuchi, S. Shimotsu, J. Ogiwara, J. Minowa, "Estimation of direct current bias and drift of TI:LiNbO$_3$ optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
  15. H. Nagata, T. Kitanoubou, K. Shima, M. Shiroishi, "Process control for a SiO$_2$ buffer layer of TI:LiNbO$_3$ modulators to obtain reduced DC drift performance," Opt. Eng. 36, 3478-3480 (1997).
  16. H. Nagata, H. Takahashi, H. Takai, T. Kugo, "Impurity evaluation of SiO$_2$ films on TI:LiNbO$_3$ substrates," Jpn. J. Appl. Phys. 34, 606-609 (1995).
  17. D. S. Kim, W. S. Yang, W. K. Kim, H. Y. Lee, H. Kim, D. H. Yoon, "DC drift suppression of TI:LiNbO$_3$ waveguide chip by minimizing the contamination in oxide buffer layer," J. Cryst. Growth 288, 188-191 (2006).
  18. H. Nagata, Y. Miyama, K. Higuma, Y. Hashimoto, F. Ya-mamoto, Y. Yamane, M. Yatsuki, "Interface reactions in TI:LiNbO$_3$ based optoelectronic devices," Proc. Mat. Res. Soc. Symp. (2001) pp. AA321-AA325.
  19. H. Nagata, M. Shiroishi, T. Kitanoubou, K. Ogura, "DC drift reduction in TI:LiNbO$_3$ optical modulators by decreasing the water content of vacuum evaporation deposited SiO$_2$ buffer layers," Opt. Eng. 37, 2855-2858 (1998).
  20. U.S. Patent 10 050 656.
  21. U.S. Patent 6 282 356.
  22. Y. Zhang, L. Guilbert, P. Bourson, "Characterization of TI:LiNbO$_3$ waveguides by micro-Raman and luminescence spectroscopy," Appl. Phys. B 78, 355-366 (2004).
  23. R. C. Twu, H. Y. Hong, H. H. Lee, "An optical homodyne technique to measure photorefractive-induced phase drifts in lithium niobate phase modulators," Opt. Exp. 16, 4366-4374 (2008).
  24. E. L. Wooten, K. M. Kissa, Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. MacBrien, D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Topics Quantum Electron. 6, 69-82 (2000).
  25. M. Powel, A. O'Donnell, "What integrated optics is really used for," Opt. Photon. News 8, 23-28 (1997).
  26. U.S. Patent 6 198 855.
  27. H. Nagata, N. F. O'Beirn, W. R. Bosenberg, G. L. Reiff, K. R. Voisine, "DC voltage-induced thermal shift of bias point in TI:LiNbO$_3$ optical modulators," IEEE Photon. Technol. Lett. 16, 2460-2462 (2004).
  28. M. Seino, T. Nakazawa, Y. Kubota, M. Doi, T. Yamane, H. Hakogi, "A low DC drift TI:LiNbO$_3$ modulators assured over 15 years," Proc. Opt. Fiber Commun. (1992) pp. 325-328.
  29. P. Skeath, C. H. Bulmer, S. C. Hiser, W. K. Burns, "Novel electrostatic mechanism in the thermal instability of z-cut TI:LiNbO$_3$ interferometers," Appl. Phys. Lett. 49, 1221-1223 (1986).
  30. U.S. Patent 6 044 184.
  31. R. V. Schmidt, P. S. Cross, A. M. Glass, "Optically induced crosstalk in TI:LiNbO$_3$ waveguide switches," J. Appl. Phys. 51, 90-93 (1979).
  32. G. E. Betts, F. J. O'Donnel, K. G. Ray, "Effect of annealing on photorefractive damage in titanium-indiffused LiNbO$_3$ modulators," IEEE Photon. Technol. Lett. 6, 211-213 (1994).
  33. R. A. Becker, "Thermal fixing of Ti-indifused LiNbO$_3$ channel waveguides for reduced photorefractive susceptibility," Appl. Phys. Lett. 45, 121-123 (1984).
  34. H. Nagata, K. Kiuchu, T. Sugamata, "Refractive index fluctuations in deformed TI:LiNbO$_3$ waveguides due to SiO$_2$ overlayer deposition," Appl. Phys. Lett. 63, 1176-1178 (1993).
  35. U. Schlarb, K. Betzler, "Refractive indexes of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit," Phys. Rev. B. 48, 15613-15620 (1993).
  36. M. Abarkan, M. Aillerie, J. P. Salvestrini, M. D. Fontana, E. P. Kokanyan, "Electro-optic and dielectric properties of hafnium-doped congruent lithium niobate crystals," Appl. Phys. B. 92, 603-608 (2008).
  37. A. M. Glass, D. von der Linde, T. Negran, Appl. Phys. Lett. 25, 233 (1974).
  38. F. Nitanda, Y. Furukawa, S. Makio, M. Sato, K. Ito, "Increased optical damage resistance and transparency in MgO-doped LITAO3 single crystals," Jpn. J. Appl. Phys. 34, 1546-1549 (1995).
  39. M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos-Nedelec, N. Theofanous, G. Alexakis, J. Appl. Phys. 65, 2406-2408 (1989).
  40. T. Bartholomaus, K. Buse, C. Deuper, E. Kratzig, Phys. Stat. Sol. (a) 142, 55 (1994).
  41. J. de Toro, M. Serrano, A. G. Cabanes, J. Cabrera, "Accurate interferometric measurement of electro-optic coefficients: Application to quasi-stoichiometric LiNbO$_3$," Opt. Commun. 154, 23 (1998).
  42. M. Jazbinsek, M. Zgonik, "Material tensor parameters of LiNbO$_3$ relevant for electro-and elasto-optics," App. Phys. B. 74, 407-414 (2002).
  43. F. Giustino, P. Umari, A. Pasquarello, "Dielectric effect of a thin SiO$_2$ interlayer at the interface between silicon and high-k oxides," Microelectron. Eng. 72, 299-303 (2004).

2008 (2)

R. C. Twu, H. Y. Hong, H. H. Lee, "An optical homodyne technique to measure photorefractive-induced phase drifts in lithium niobate phase modulators," Opt. Exp. 16, 4366-4374 (2008).

M. Abarkan, M. Aillerie, J. P. Salvestrini, M. D. Fontana, E. P. Kokanyan, "Electro-optic and dielectric properties of hafnium-doped congruent lithium niobate crystals," Appl. Phys. B. 92, 603-608 (2008).

2006 (1)

D. S. Kim, W. S. Yang, W. K. Kim, H. Y. Lee, H. Kim, D. H. Yoon, "DC drift suppression of TI:LiNbO$_3$ waveguide chip by minimizing the contamination in oxide buffer layer," J. Cryst. Growth 288, 188-191 (2006).

2004 (3)

H. Nagata, N. F. O'Beirn, W. R. Bosenberg, G. L. Reiff, K. R. Voisine, "DC voltage-induced thermal shift of bias point in TI:LiNbO$_3$ optical modulators," IEEE Photon. Technol. Lett. 16, 2460-2462 (2004).

Y. Zhang, L. Guilbert, P. Bourson, "Characterization of TI:LiNbO$_3$ waveguides by micro-Raman and luminescence spectroscopy," Appl. Phys. B 78, 355-366 (2004).

F. Giustino, P. Umari, A. Pasquarello, "Dielectric effect of a thin SiO$_2$ interlayer at the interface between silicon and high-k oxides," Microelectron. Eng. 72, 299-303 (2004).

2003 (1)

G. L. Li, P. K. L. Yu, "Optical intensity modulators for digital and analog applications," J. Lightw. Technol. 21, 2010-2030 (2003).

2002 (2)

H. Nagata, Y. Li, I. Croston, D. R. Maack, A. Appleyard, "DC drift activation energy of TI:LiNbO$_3$ optical modulators based on thousands of hours of active accelerated aging tests," IEEE Photon. Technol. Lett. 14, 1076-1078 (2002).

M. Jazbinsek, M. Zgonik, "Material tensor parameters of LiNbO$_3$ relevant for electro-and elasto-optics," App. Phys. B. 74, 407-414 (2002).

2001 (1)

N. Miyazaki, K. Ooizumi, T. Hara, M. Yamada, H. Nagata, T. Sakane, "TI:LiNbO$_3$ optical intensity modulator packaged with monitor photodiode," IEEE Photon. Technol. Lett. 13, 442-444 (2001).

2000 (2)

H. Nagata, H. Honda, "Initial bias dependency in dc drift of z-cut TI:LiNbO$_3$ optical intensity modulators," Opt. Eng. 39, 1103-1105 (2000).

E. L. Wooten, K. M. Kissa, Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. MacBrien, D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Topics Quantum Electron. 6, 69-82 (2000).

1998 (2)

H. Nagata, M. Shiroishi, T. Kitanoubou, K. Ogura, "DC drift reduction in TI:LiNbO$_3$ optical modulators by decreasing the water content of vacuum evaporation deposited SiO$_2$ buffer layers," Opt. Eng. 37, 2855-2858 (1998).

J. de Toro, M. Serrano, A. G. Cabanes, J. Cabrera, "Accurate interferometric measurement of electro-optic coefficients: Application to quasi-stoichiometric LiNbO$_3$," Opt. Commun. 154, 23 (1998).

1997 (2)

M. Powel, A. O'Donnell, "What integrated optics is really used for," Opt. Photon. News 8, 23-28 (1997).

H. Nagata, T. Kitanoubou, K. Shima, M. Shiroishi, "Process control for a SiO$_2$ buffer layer of TI:LiNbO$_3$ modulators to obtain reduced DC drift performance," Opt. Eng. 36, 3478-3480 (1997).

1996 (1)

S. K. Korotky, J. Veselka, "An RC network analysis of long term TI:LiNbO$_3$ bias stability," J. Lightw. Technol. 14, 2687-2697 (1996).

1995 (3)

H. Nagata, J. Ichikawa, "Progress and problems in reliability of TI:LiNbO$_3$ optical intensity modulators," Opt. Eng. 34, 3284-3293 (1995).

H. Nagata, H. Takahashi, H. Takai, T. Kugo, "Impurity evaluation of SiO$_2$ films on TI:LiNbO$_3$ substrates," Jpn. J. Appl. Phys. 34, 606-609 (1995).

F. Nitanda, Y. Furukawa, S. Makio, M. Sato, K. Ito, "Increased optical damage resistance and transparency in MgO-doped LITAO3 single crystals," Jpn. J. Appl. Phys. 34, 1546-1549 (1995).

1994 (3)

T. Bartholomaus, K. Buse, C. Deuper, E. Kratzig, Phys. Stat. Sol. (a) 142, 55 (1994).

G. E. Betts, F. J. O'Donnel, K. G. Ray, "Effect of annealing on photorefractive damage in titanium-indiffused LiNbO$_3$ modulators," IEEE Photon. Technol. Lett. 6, 211-213 (1994).

H. Nagata, K. Kiuchi, S. Shimotsu, J. Ogiwara, J. Minowa, "Estimation of direct current bias and drift of TI:LiNbO$_3$ optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).

1993 (3)

H. Nagata, K. Kiuchi, "Temperature dependence of dc drift of TI:LiNbO$_3$ optical modulators with sputter deposited SiO$_2$ buffer layer," J. Appl. Phys. 73, 4162-4164 (1993).

H. Nagata, K. Kiuchu, T. Sugamata, "Refractive index fluctuations in deformed TI:LiNbO$_3$ waveguides due to SiO$_2$ overlayer deposition," Appl. Phys. Lett. 63, 1176-1178 (1993).

U. Schlarb, K. Betzler, "Refractive indexes of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit," Phys. Rev. B. 48, 15613-15620 (1993).

1990 (1)

G. E. Betts, C. H. Cox, K. G. Ray, "20 GHz optical analog link using an external modulator," IEEE Photon. Technol. Lett. 2, 923-925 (1990).

1989 (1)

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos-Nedelec, N. Theofanous, G. Alexakis, J. Appl. Phys. 65, 2406-2408 (1989).

1986 (1)

P. Skeath, C. H. Bulmer, S. C. Hiser, W. K. Burns, "Novel electrostatic mechanism in the thermal instability of z-cut TI:LiNbO$_3$ interferometers," Appl. Phys. Lett. 49, 1221-1223 (1986).

1985 (1)

1984 (1)

R. A. Becker, "Thermal fixing of Ti-indifused LiNbO$_3$ channel waveguides for reduced photorefractive susceptibility," Appl. Phys. Lett. 45, 121-123 (1984).

1981 (1)

S. Yamada, M. Minakata, "DC drift phenomena in TI:LiNbO$_3$ optical waveguide devices," Jpn. J. Appl. Phys. 20, 733-737 (1981).

1979 (1)

R. V. Schmidt, P. S. Cross, A. M. Glass, "Optically induced crosstalk in TI:LiNbO$_3$ waveguide switches," J. Appl. Phys. 51, 90-93 (1979).

1974 (1)

A. M. Glass, D. von der Linde, T. Negran, Appl. Phys. Lett. 25, 233 (1974).

App. Phys. B. (1)

M. Jazbinsek, M. Zgonik, "Material tensor parameters of LiNbO$_3$ relevant for electro-and elasto-optics," App. Phys. B. 74, 407-414 (2002).

Appl. Phys. B (1)

Y. Zhang, L. Guilbert, P. Bourson, "Characterization of TI:LiNbO$_3$ waveguides by micro-Raman and luminescence spectroscopy," Appl. Phys. B 78, 355-366 (2004).

Appl. Phys. Lett. (1)

R. A. Becker, "Thermal fixing of Ti-indifused LiNbO$_3$ channel waveguides for reduced photorefractive susceptibility," Appl. Phys. Lett. 45, 121-123 (1984).

Appl. Phys. Lett. (1)

H. Nagata, K. Kiuchu, T. Sugamata, "Refractive index fluctuations in deformed TI:LiNbO$_3$ waveguides due to SiO$_2$ overlayer deposition," Appl. Phys. Lett. 63, 1176-1178 (1993).

Appl. Phys. B. (1)

M. Abarkan, M. Aillerie, J. P. Salvestrini, M. D. Fontana, E. P. Kokanyan, "Electro-optic and dielectric properties of hafnium-doped congruent lithium niobate crystals," Appl. Phys. B. 92, 603-608 (2008).

Appl. Phys. Lett. (2)

A. M. Glass, D. von der Linde, T. Negran, Appl. Phys. Lett. 25, 233 (1974).

P. Skeath, C. H. Bulmer, S. C. Hiser, W. K. Burns, "Novel electrostatic mechanism in the thermal instability of z-cut TI:LiNbO$_3$ interferometers," Appl. Phys. Lett. 49, 1221-1223 (1986).

IEEE J. Sel. Topics Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. MacBrien, D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Topics Quantum Electron. 6, 69-82 (2000).

IEEE Photon. Technol. Lett. (1)

H. Nagata, N. F. O'Beirn, W. R. Bosenberg, G. L. Reiff, K. R. Voisine, "DC voltage-induced thermal shift of bias point in TI:LiNbO$_3$ optical modulators," IEEE Photon. Technol. Lett. 16, 2460-2462 (2004).

IEEE Photon. Technol. Lett. (2)

G. E. Betts, C. H. Cox, K. G. Ray, "20 GHz optical analog link using an external modulator," IEEE Photon. Technol. Lett. 2, 923-925 (1990).

G. E. Betts, F. J. O'Donnel, K. G. Ray, "Effect of annealing on photorefractive damage in titanium-indiffused LiNbO$_3$ modulators," IEEE Photon. Technol. Lett. 6, 211-213 (1994).

IEEE Photon. Technol. Lett. (2)

N. Miyazaki, K. Ooizumi, T. Hara, M. Yamada, H. Nagata, T. Sakane, "TI:LiNbO$_3$ optical intensity modulator packaged with monitor photodiode," IEEE Photon. Technol. Lett. 13, 442-444 (2001).

H. Nagata, Y. Li, I. Croston, D. R. Maack, A. Appleyard, "DC drift activation energy of TI:LiNbO$_3$ optical modulators based on thousands of hours of active accelerated aging tests," IEEE Photon. Technol. Lett. 14, 1076-1078 (2002).

J. Appl. Phys. (1)

H. Nagata, K. Kiuchi, "Temperature dependence of dc drift of TI:LiNbO$_3$ optical modulators with sputter deposited SiO$_2$ buffer layer," J. Appl. Phys. 73, 4162-4164 (1993).

J. Cryst. Growth (1)

D. S. Kim, W. S. Yang, W. K. Kim, H. Y. Lee, H. Kim, D. H. Yoon, "DC drift suppression of TI:LiNbO$_3$ waveguide chip by minimizing the contamination in oxide buffer layer," J. Cryst. Growth 288, 188-191 (2006).

J. Appl. Phys. (3)

H. Nagata, K. Kiuchi, S. Shimotsu, J. Ogiwara, J. Minowa, "Estimation of direct current bias and drift of TI:LiNbO$_3$ optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).

R. V. Schmidt, P. S. Cross, A. M. Glass, "Optically induced crosstalk in TI:LiNbO$_3$ waveguide switches," J. Appl. Phys. 51, 90-93 (1979).

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos-Nedelec, N. Theofanous, G. Alexakis, J. Appl. Phys. 65, 2406-2408 (1989).

J. Lightw. Technol. (1)

G. L. Li, P. K. L. Yu, "Optical intensity modulators for digital and analog applications," J. Lightw. Technol. 21, 2010-2030 (2003).

J. Lightw. Technol. (1)

S. K. Korotky, J. Veselka, "An RC network analysis of long term TI:LiNbO$_3$ bias stability," J. Lightw. Technol. 14, 2687-2697 (1996).

Jpn. J. Appl. Phys. (1)

H. Nagata, H. Takahashi, H. Takai, T. Kugo, "Impurity evaluation of SiO$_2$ films on TI:LiNbO$_3$ substrates," Jpn. J. Appl. Phys. 34, 606-609 (1995).

Jpn. J. Appl. Phys. (1)

F. Nitanda, Y. Furukawa, S. Makio, M. Sato, K. Ito, "Increased optical damage resistance and transparency in MgO-doped LITAO3 single crystals," Jpn. J. Appl. Phys. 34, 1546-1549 (1995).

Jpn. J. Appl. Phys. (1)

S. Yamada, M. Minakata, "DC drift phenomena in TI:LiNbO$_3$ optical waveguide devices," Jpn. J. Appl. Phys. 20, 733-737 (1981).

Microelectron. Eng. (1)

F. Giustino, P. Umari, A. Pasquarello, "Dielectric effect of a thin SiO$_2$ interlayer at the interface between silicon and high-k oxides," Microelectron. Eng. 72, 299-303 (2004).

Opt. Commun. (1)

J. de Toro, M. Serrano, A. G. Cabanes, J. Cabrera, "Accurate interferometric measurement of electro-optic coefficients: Application to quasi-stoichiometric LiNbO$_3$," Opt. Commun. 154, 23 (1998).

Opt. Eng. (4)

H. Nagata, T. Kitanoubou, K. Shima, M. Shiroishi, "Process control for a SiO$_2$ buffer layer of TI:LiNbO$_3$ modulators to obtain reduced DC drift performance," Opt. Eng. 36, 3478-3480 (1997).

H. Nagata, J. Ichikawa, "Progress and problems in reliability of TI:LiNbO$_3$ optical intensity modulators," Opt. Eng. 34, 3284-3293 (1995).

H. Nagata, H. Honda, "Initial bias dependency in dc drift of z-cut TI:LiNbO$_3$ optical intensity modulators," Opt. Eng. 39, 1103-1105 (2000).

H. Nagata, M. Shiroishi, T. Kitanoubou, K. Ogura, "DC drift reduction in TI:LiNbO$_3$ optical modulators by decreasing the water content of vacuum evaporation deposited SiO$_2$ buffer layers," Opt. Eng. 37, 2855-2858 (1998).

Opt. Exp. (1)

R. C. Twu, H. Y. Hong, H. H. Lee, "An optical homodyne technique to measure photorefractive-induced phase drifts in lithium niobate phase modulators," Opt. Exp. 16, 4366-4374 (2008).

Opt. Lett. (1)

Opt. Photon. News (1)

M. Powel, A. O'Donnell, "What integrated optics is really used for," Opt. Photon. News 8, 23-28 (1997).

Phys. Rev. B. (1)

U. Schlarb, K. Betzler, "Refractive indexes of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit," Phys. Rev. B. 48, 15613-15620 (1993).

Phys. Stat. Sol. (a) (1)

T. Bartholomaus, K. Buse, C. Deuper, E. Kratzig, Phys. Stat. Sol. (a) 142, 55 (1994).

Other (9)

U.S. Patent 6 044 184.

U.S. Patent 6 198 855.

M. Seino, T. Nakazawa, Y. Kubota, M. Doi, T. Yamane, H. Hakogi, "A low DC drift TI:LiNbO$_3$ modulators assured over 15 years," Proc. Opt. Fiber Commun. (1992) pp. 325-328.

U.S. Patent 10 050 656.

U.S. Patent 6 282 356.

H. Nagata, Y. Miyama, K. Higuma, Y. Hashimoto, F. Ya-mamoto, Y. Yamane, M. Yatsuki, "Interface reactions in TI:LiNbO$_3$ based optoelectronic devices," Proc. Mat. Res. Soc. Symp. (2001) pp. AA321-AA325.

W. Minford, "The taming of TI:LiNbO$_3$," FIO III (1999).

Technical Note, ATT Microelectronics (1995) Lithium niobate modulators.

D. Maack, "Reliability of lithium niobate Mach–Zehnder modulators for digital optical fiber telecommunications systems," Proc. SPIE Crit. Rev.: Reliabil. Opt. Fibers Opt. Fibers Syst. (1999) pp. 197-230.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.