Abstract

Optical demultiplexing from 160 Gbit/s to 10 Gbit/s in a single lumped, electrically driven electroabsorption modulator (EAM) is experimentally presented. A quantum-dash Fabry-Pèrot mode-locked-laser is used to sub-harmonically extract a clock signal from the 160 Gbit/s data stream. A drive signal consisting of a series of harmonics of the recovered clock signal enables error-free demultiplexing of all channels in a 160 Gbit/s single-polarization optical time division multiplexing (OTDM) signal. This technique is quasi-analytically compared with the conventional approach of cascading two EAMs when performing 160 Gbit/s to 10 Gbit/s demultiplexing. The analysis reveals that using a single, harmonically driven EAM can result in lower penalties with respect to both degradations of the extinction ratio and width of pulses used in the OTDM signal.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription