Abstract

We report the first detailed implementation of a 2-D finite-element method (FEM) through a commercial FEM solver that can be universally applied to calculate the Brillouin gain characteristics of optical fibers with arbitrary refractive index profiles and material composition, including radially asymmetric and microstructured optical fibers (MOFs). Experimental results on various fabricated solid and MOFs are presented that demonstrate the widespread applicability and high accuracy of the proposed technique, which should prove to be an invaluable tool for designing novel optical fibers with tailored Brillouin response for a wide range of applications.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription