Abstract

We have developed an all-fiber system where we generate electromagnetically induced transparencies in a 20-m acetylene-filled photonic microcell. Using this system, pulses of probe light were delayed and advanced by up to 5 and 1 ns, respectively. The delay/advance is tunable through the probe detuning and the coupling Rabi frequency. Through optimization of experimental parameters such as acetylene pressure, coupling laser power and decoherence rates it is shown that a pulse delay of 7 ns/m is possible. Limitations imposed on the fiber length by resonance group velocity dispersion and spectral reshaping are also discussed. In addition to optical buffering, we suggest a slow-light-based fiber optical gyroscope with an enhanced SNR of ${\sim} {\hbox {92}}$.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. L. Thévenaz, "Slow and fast light in optical fibres," Nature Photon. 2, 474-481 (2008).
  2. V. Vali, R. W. Shorthill, "Fiber ring interferometer," Appl. Opt. 15, 1099-1100 (1976).
  3. S. E. Harris, J. E. Field, A. Kasapi, "Dispersive properties of electromagnetically induced transparency," Phys. Rev. A 46, R29-R32 (1992).
  4. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
  5. K. Y. Song, M. G. Herraez, L. Thevanez, "Observation of pulse delaying and advancement in optical fibers using stimulated Brilluoin scattering," Opt. Exp. 13, 82-88 (2004).
  6. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, "Tunable all-optical delays via brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902-1-153902-4 (2005).
  7. D. Dahan, E. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: A route to all optical buffering," Opt. Exp. 13, 6234-6249 (2005).
  8. J. E. Sharping, Y. Okawachi, A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Exp. 13, 6092-6098 (2005).
  9. S. Ghosh, J. E. Sharping, D. G. Ouzounov, A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic bandgap fibers," Phys. Rev. Lett. 94, 093092-1-093092-4 (2005).
  10. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
  11. P. S. Light, F. Couny, F. Benabid, "Low optical insertion-loss and vacuum pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber," Opt. Lett. 31, 2538-2540 (2006).
  12. R. Okazawa, H. Kuze, H. Masusaki, N. Takeuchi, "Sensitivity enhancement for acetylene detection and 1.5 $\mu$m by use of a high finesse optical cavity," Jpn. J. Appl. Phys. 38, 4946-4949 (1999).
  13. P. S. Light, Photonic Microcells for Quantum Optics Applications Ph.D. dissertation Dept. Physics Bath Univ.BathU.K. (2008).
  14. C. P. Rinsland, A. Baldacci, K. N. Rao, "Acetylene bands observed in carbon stars: A laboratory study and an illustrative example of its application," Astrophys. J. Suppl. Ser. 49, 487-513 (1982).
  15. J. M. Brown, Molecular Spectroscopy (Oxford Univ. Press, 1998).
  16. P. W. Milonni, Fast Light, Slow Light and Left-Handed Light (Taylor & Francis, LLC, 2005).
  17. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5529-5232 (1999).
  18. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, A. E. Willner, "Maximum time delay achievable on propagation through a slow light medium," Phys. Rev. A 71, (2005) 023801.
  19. E. Figueroa, F. Vewinger, J. Appel, A. I. Lvovsky, "Decoherence of electromagnetically induced transparency in atomic vapour," Opt. Lett. 31, 2625-2627 (2006).
  20. W. C. Swann, S. L. Gilbert, "Pressure-induced shift and broadening of 1510–1540 nm acetylene wavelength calibration lines," J. Opt. Soc. Amer. B 17, 1263-1270 (2000).
  21. E. Udd, Fiber Optic Sensors: An Introduction for Scientists and Engineers (Wiley, 2006).
  22. H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Air-core photonic-bandgap fiber-optic gyroscope," J. Lightw. Technol. 24, 3169-3174 (2006).
  23. S. Blin, M. J. F. Digonnet, G. S. Kino, "Noise analysis of an air-core fiber-optic gyroscope," IEEE Photon. Technol. Lett. 19, 1520-1522 (2007).
  24. S. Blin, H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber," J. Lightw. Technol. 25, 861-861 (2007).
  25. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, K. Salit, "Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light," Phys. Rev. A 75, 053807 (2007).

2008 (1)

L. Thévenaz, "Slow and fast light in optical fibres," Nature Photon. 2, 474-481 (2008).

2007 (3)

S. Blin, M. J. F. Digonnet, G. S. Kino, "Noise analysis of an air-core fiber-optic gyroscope," IEEE Photon. Technol. Lett. 19, 1520-1522 (2007).

S. Blin, H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber," J. Lightw. Technol. 25, 861-861 (2007).

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, K. Salit, "Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light," Phys. Rev. A 75, 053807 (2007).

2006 (3)

2005 (6)

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, A. E. Willner, "Maximum time delay achievable on propagation through a slow light medium," Phys. Rev. A 71, (2005) 023801.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, "Tunable all-optical delays via brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902-1-153902-4 (2005).

D. Dahan, E. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: A route to all optical buffering," Opt. Exp. 13, 6234-6249 (2005).

J. E. Sharping, Y. Okawachi, A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Exp. 13, 6092-6098 (2005).

S. Ghosh, J. E. Sharping, D. G. Ouzounov, A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic bandgap fibers," Phys. Rev. Lett. 94, 093092-1-093092-4 (2005).

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).

2004 (1)

K. Y. Song, M. G. Herraez, L. Thevanez, "Observation of pulse delaying and advancement in optical fibers using stimulated Brilluoin scattering," Opt. Exp. 13, 82-88 (2004).

2000 (1)

W. C. Swann, S. L. Gilbert, "Pressure-induced shift and broadening of 1510–1540 nm acetylene wavelength calibration lines," J. Opt. Soc. Amer. B 17, 1263-1270 (2000).

1999 (3)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5529-5232 (1999).

R. Okazawa, H. Kuze, H. Masusaki, N. Takeuchi, "Sensitivity enhancement for acetylene detection and 1.5 $\mu$m by use of a high finesse optical cavity," Jpn. J. Appl. Phys. 38, 4946-4949 (1999).

L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).

1992 (1)

S. E. Harris, J. E. Field, A. Kasapi, "Dispersive properties of electromagnetically induced transparency," Phys. Rev. A 46, R29-R32 (1992).

1982 (1)

C. P. Rinsland, A. Baldacci, K. N. Rao, "Acetylene bands observed in carbon stars: A laboratory study and an illustrative example of its application," Astrophys. J. Suppl. Ser. 49, 487-513 (1982).

1976 (1)

Appl. Opt. (1)

Astrophys. J. Suppl. Ser. (1)

C. P. Rinsland, A. Baldacci, K. N. Rao, "Acetylene bands observed in carbon stars: A laboratory study and an illustrative example of its application," Astrophys. J. Suppl. Ser. 49, 487-513 (1982).

IEEE Photon. Technol. Lett. (1)

S. Blin, M. J. F. Digonnet, G. S. Kino, "Noise analysis of an air-core fiber-optic gyroscope," IEEE Photon. Technol. Lett. 19, 1520-1522 (2007).

J. Lightw. Technol. (2)

S. Blin, H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber," J. Lightw. Technol. 25, 861-861 (2007).

H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Air-core photonic-bandgap fiber-optic gyroscope," J. Lightw. Technol. 24, 3169-3174 (2006).

J. Opt. Soc. Amer. B (1)

W. C. Swann, S. L. Gilbert, "Pressure-induced shift and broadening of 1510–1540 nm acetylene wavelength calibration lines," J. Opt. Soc. Amer. B 17, 1263-1270 (2000).

Jpn. J. Appl. Phys. (1)

R. Okazawa, H. Kuze, H. Masusaki, N. Takeuchi, "Sensitivity enhancement for acetylene detection and 1.5 $\mu$m by use of a high finesse optical cavity," Jpn. J. Appl. Phys. 38, 4946-4949 (1999).

Nature (2)

L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).

Nature Photon. (1)

L. Thévenaz, "Slow and fast light in optical fibres," Nature Photon. 2, 474-481 (2008).

Opt. Exp. (3)

D. Dahan, E. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: A route to all optical buffering," Opt. Exp. 13, 6234-6249 (2005).

J. E. Sharping, Y. Okawachi, A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Exp. 13, 6092-6098 (2005).

K. Y. Song, M. G. Herraez, L. Thevanez, "Observation of pulse delaying and advancement in optical fibers using stimulated Brilluoin scattering," Opt. Exp. 13, 82-88 (2004).

Opt. Lett. (2)

Phys. Rev. A (3)

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, A. E. Willner, "Maximum time delay achievable on propagation through a slow light medium," Phys. Rev. A 71, (2005) 023801.

S. E. Harris, J. E. Field, A. Kasapi, "Dispersive properties of electromagnetically induced transparency," Phys. Rev. A 46, R29-R32 (1992).

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, K. Salit, "Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light," Phys. Rev. A 75, 053807 (2007).

Phys. Rev. Lett. (3)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, "Tunable all-optical delays via brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902-1-153902-4 (2005).

S. Ghosh, J. E. Sharping, D. G. Ouzounov, A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic bandgap fibers," Phys. Rev. Lett. 94, 093092-1-093092-4 (2005).

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5529-5232 (1999).

Other (4)

P. S. Light, Photonic Microcells for Quantum Optics Applications Ph.D. dissertation Dept. Physics Bath Univ.BathU.K. (2008).

J. M. Brown, Molecular Spectroscopy (Oxford Univ. Press, 1998).

P. W. Milonni, Fast Light, Slow Light and Left-Handed Light (Taylor & Francis, LLC, 2005).

E. Udd, Fiber Optic Sensors: An Introduction for Scientists and Engineers (Wiley, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.