Abstract

The first implementation of an integrated filter for optical space switching based on coupled Fabry–Perot cavities built in a planar waveguide and working at oblique incidence is presented in this paper. Parabolic mirrors are used to collimate and direct light into a filter defined by deep etching in a GaAs waveguide and formed of four high-order cavities that provide a 200 GHz comb response. The filter has a theoretical passband bandwidth of more than 50 GHz and allows the switch to work over an entire wavelength band. It was possible to contain 50 channels of the International Telecommunication Union 100 GHz grid within the filter response. Bit error rate tests at 10 Gb/s were performed to evaluate the switch power penalty. To assess the scalability of this switch design, crossbar and shuffle Beneš layout for devices with 2–16 ports were optimized. The dominating factor that limits the minimization of a switch fabric area is the beam waist required to avoid distortion by the filters.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. L. Mason, A. Vinokurov, N. Zhao, D. Plant, "Topological design and dimensioning of agile all-photonic networks," Comput. Netw. 50, 268-287 (2006).
  2. J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, J. V. Gates, "1100$\,\times\,$1100 port MEMS-based optical crossconnect with 4-dB maximum loss," IEEE Photon. Technol. Lett. 15, 1537-1539 (2003).
  3. T. S. A. El-Bawab, Optical Switching (Springer-Verlag, 2006).
  4. P. De Dobbelaere, K. Falta, L. Fan, S. Gloeckner, S. Patra, "Digital MEMS for optical switching," IEEE Commun. Mag. 40, 88-95 (2002).
  5. X. H. Ma, G. S. Kuo, "A novel integrated multistage optical MEMS-mirror switch architecture design with shuffle Benes inter-stage connecting principle," Opt. Commun. 242, 179-189 (2004).
  6. M. Ménard, A. G. Kirk, "Design of off axis Fabry–Perot filters in planar waveguides with deep-etched features," Opt. Exp. 17, 17614-17629 (2009).
  7. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007).
  8. P. Dong, S. F. Preble, M. Lipson, "All-optical compact silicon comb switch," Opt. Exp. 15, 9600-9605 (2007).
  9. I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).
  10. B. G. Lee, A. Biberman, P. Dong, M. Lipson, K. Bergman, "All-optical comb switch for multiwavelength message routing in silicon photonic networks," IEEE Photon. Technol. Lett. 20, 767-769 (2008).

2009 (1)

M. Ménard, A. G. Kirk, "Design of off axis Fabry–Perot filters in planar waveguides with deep-etched features," Opt. Exp. 17, 17614-17629 (2009).

2008 (1)

B. G. Lee, A. Biberman, P. Dong, M. Lipson, K. Bergman, "All-optical comb switch for multiwavelength message routing in silicon photonic networks," IEEE Photon. Technol. Lett. 20, 767-769 (2008).

2007 (1)

P. Dong, S. F. Preble, M. Lipson, "All-optical compact silicon comb switch," Opt. Exp. 15, 9600-9605 (2007).

2006 (1)

L. Mason, A. Vinokurov, N. Zhao, D. Plant, "Topological design and dimensioning of agile all-photonic networks," Comput. Netw. 50, 268-287 (2006).

2004 (1)

X. H. Ma, G. S. Kuo, "A novel integrated multistage optical MEMS-mirror switch architecture design with shuffle Benes inter-stage connecting principle," Opt. Commun. 242, 179-189 (2004).

2003 (1)

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, J. V. Gates, "1100$\,\times\,$1100 port MEMS-based optical crossconnect with 4-dB maximum loss," IEEE Photon. Technol. Lett. 15, 1537-1539 (2003).

2002 (1)

P. De Dobbelaere, K. Falta, L. Fan, S. Gloeckner, S. Patra, "Digital MEMS for optical switching," IEEE Commun. Mag. 40, 88-95 (2002).

Comput. Netw. (1)

L. Mason, A. Vinokurov, N. Zhao, D. Plant, "Topological design and dimensioning of agile all-photonic networks," Comput. Netw. 50, 268-287 (2006).

IEEE Commun. Mag. (1)

P. De Dobbelaere, K. Falta, L. Fan, S. Gloeckner, S. Patra, "Digital MEMS for optical switching," IEEE Commun. Mag. 40, 88-95 (2002).

IEEE Photon. Technol. Lett. (2)

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, J. V. Gates, "1100$\,\times\,$1100 port MEMS-based optical crossconnect with 4-dB maximum loss," IEEE Photon. Technol. Lett. 15, 1537-1539 (2003).

B. G. Lee, A. Biberman, P. Dong, M. Lipson, K. Bergman, "All-optical comb switch for multiwavelength message routing in silicon photonic networks," IEEE Photon. Technol. Lett. 20, 767-769 (2008).

Opt. Commun. (1)

X. H. Ma, G. S. Kuo, "A novel integrated multistage optical MEMS-mirror switch architecture design with shuffle Benes inter-stage connecting principle," Opt. Commun. 242, 179-189 (2004).

Opt. Exp. (2)

M. Ménard, A. G. Kirk, "Design of off axis Fabry–Perot filters in planar waveguides with deep-etched features," Opt. Exp. 17, 17614-17629 (2009).

P. Dong, S. F. Preble, M. Lipson, "All-optical compact silicon comb switch," Opt. Exp. 15, 9600-9605 (2007).

Other (3)

I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).

T. S. A. El-Bawab, Optical Switching (Springer-Verlag, 2006).

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.