Abstract

Resonant free-spectral-range (FSR) RF-optic modulators using dual-disc resonators with a 2:1 ratio of the radii of the discs have been proposed and theoretically analyzed to increase the sensitivity–bandwidth product compared with that of a single resonator modulator. The transmission of the coupled resonator structure is analyzed for various coupling parameters. The phase of the larger resonator is electro-optically modulated, and the output fields at the input laser frequency and the generated sideband frequencies are calculated. The detected RF power is then calculated. The modulator sensitivity, 3-dBe modulation bandwidth, and their product have been analyzed. The sensitivity and modulation bandwidth can be increased by factors of 1.9 and 6.4, respectively, for the different cases. The sensitivity–bandwidth product can be increased up to a factor of 3.3 in one design. For ${\pm}5\hbox{\%}$ error of the ratio of the radius of each disc, errors of the sensitivity and modulation bandwidth were acceptable.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. E. I. Gordon, J. D. Rigden, "The Fabry–Perot electo-optic modulator," Bell Syst. Tech. J. 42, 155-179 (1963).
  2. P. Rabiei, W. H. Steier, C. Zhang, L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightw. Technol. 20, 1968-1974 (2002).
  3. H. Tazawa, Y. H. Kuo, I. Dunayevskiy, J. Luo, A. K.-Y. Jen, H. R. Fetterman, W. H. Steier, "Ring resonator-based electro-optic polymer traveling-wave modulator," J. Lightw. Technol. 24, 3507-3514 (2006).
  4. T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, A. E. Bond, "Optical modulators based on depletion width translation in semiconductor microdisk resonators," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
  5. D. A. Cohen, M. Hossein-Zadeh, A. F. J. Levi, "High-Q microphotonic electro-optic modulator," Solid-State Electron. 45, 1577-1589 (2001).
  6. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
  7. R. C. Williamson, "Sensitivity-bandwidth product for electro-optics modulators," Opt. Lett. 26, 1362-1363 (2001).
  8. J. Oreilly, P. Lane, "Remote delivery of video services using mm-waves and optics," J. Lightw. Technol. 12, 369-375 (1994).
  9. H. Ogava, D. Polifko, S. Banba, "Milimeter-wave fiber optic systems for personal radio communication," IEEE Trans. Microw. Theory Tech. 40, 2285-2293 (1992).
  10. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, L. Maleki, "Sub-microwatt photonic microwave receiver," IEEE Photon. Technol. Lett. 14, 1602-1604 (2002).
  11. M. Hossein-Zadeh, A. F. J. Levi, "Mb/s data transmission over a RF fiber-optic link using a LiNbO$_{3}$ microdisk optical modulator," Solid-State Electron. 46, 2173-2178 (2002).
  12. M. Hoessein-Zadeh, A. F. J. Levi, "Self-homodyne RF-optical LiNbO$_{3}$ microdisk receiver," Solid-State Electron. 49, 1428-1434 (2005).
  13. R. C. J. Hsu, A. Ayazi, B. Houshmand, B. Jalali, "All-dielectric photonic-assisted radio front-end technology," Nature Photon. 1, 535-538 (2007).
  14. L. Y. Tobing, P. Dumon, R. Baets, D. C. Lim, M. Chin, "The transmission properties of one-bus two-ring devices," IEICE Trans. Electron. E91-C, 167-172 (2008).
  15. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, 2003) pp. 243-251.
  16. H. Tazawa, W. H. Steier, "Analysis of ring resonator-based traveling-wave modulators," IEEE Photon. Technol. Lett. 18, 211-213 (2006).

2008 (1)

L. Y. Tobing, P. Dumon, R. Baets, D. C. Lim, M. Chin, "The transmission properties of one-bus two-ring devices," IEICE Trans. Electron. E91-C, 167-172 (2008).

2007 (1)

R. C. J. Hsu, A. Ayazi, B. Houshmand, B. Jalali, "All-dielectric photonic-assisted radio front-end technology," Nature Photon. 1, 535-538 (2007).

2006 (2)

H. Tazawa, W. H. Steier, "Analysis of ring resonator-based traveling-wave modulators," IEEE Photon. Technol. Lett. 18, 211-213 (2006).

H. Tazawa, Y. H. Kuo, I. Dunayevskiy, J. Luo, A. K.-Y. Jen, H. R. Fetterman, W. H. Steier, "Ring resonator-based electro-optic polymer traveling-wave modulator," J. Lightw. Technol. 24, 3507-3514 (2006).

2005 (3)

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, A. E. Bond, "Optical modulators based on depletion width translation in semiconductor microdisk resonators," IEEE Photon. Technol. Lett. 17, 567-569 (2005).

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).

M. Hoessein-Zadeh, A. F. J. Levi, "Self-homodyne RF-optical LiNbO$_{3}$ microdisk receiver," Solid-State Electron. 49, 1428-1434 (2005).

2002 (3)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, L. Maleki, "Sub-microwatt photonic microwave receiver," IEEE Photon. Technol. Lett. 14, 1602-1604 (2002).

M. Hossein-Zadeh, A. F. J. Levi, "Mb/s data transmission over a RF fiber-optic link using a LiNbO$_{3}$ microdisk optical modulator," Solid-State Electron. 46, 2173-2178 (2002).

P. Rabiei, W. H. Steier, C. Zhang, L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightw. Technol. 20, 1968-1974 (2002).

2001 (2)

D. A. Cohen, M. Hossein-Zadeh, A. F. J. Levi, "High-Q microphotonic electro-optic modulator," Solid-State Electron. 45, 1577-1589 (2001).

R. C. Williamson, "Sensitivity-bandwidth product for electro-optics modulators," Opt. Lett. 26, 1362-1363 (2001).

1994 (1)

J. Oreilly, P. Lane, "Remote delivery of video services using mm-waves and optics," J. Lightw. Technol. 12, 369-375 (1994).

1992 (1)

H. Ogava, D. Polifko, S. Banba, "Milimeter-wave fiber optic systems for personal radio communication," IEEE Trans. Microw. Theory Tech. 40, 2285-2293 (1992).

1963 (1)

E. I. Gordon, J. D. Rigden, "The Fabry–Perot electo-optic modulator," Bell Syst. Tech. J. 42, 155-179 (1963).

Bell Syst. Tech. J. (1)

E. I. Gordon, J. D. Rigden, "The Fabry–Perot electo-optic modulator," Bell Syst. Tech. J. 42, 155-179 (1963).

IEEE Photon. Technol. Lett. (3)

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, A. E. Bond, "Optical modulators based on depletion width translation in semiconductor microdisk resonators," IEEE Photon. Technol. Lett. 17, 567-569 (2005).

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, L. Maleki, "Sub-microwatt photonic microwave receiver," IEEE Photon. Technol. Lett. 14, 1602-1604 (2002).

H. Tazawa, W. H. Steier, "Analysis of ring resonator-based traveling-wave modulators," IEEE Photon. Technol. Lett. 18, 211-213 (2006).

IEEE Trans. Microw. Theory Tech. (1)

H. Ogava, D. Polifko, S. Banba, "Milimeter-wave fiber optic systems for personal radio communication," IEEE Trans. Microw. Theory Tech. 40, 2285-2293 (1992).

IEICE Trans. Electron. (1)

L. Y. Tobing, P. Dumon, R. Baets, D. C. Lim, M. Chin, "The transmission properties of one-bus two-ring devices," IEICE Trans. Electron. E91-C, 167-172 (2008).

J. Lightw. Technol. (3)

J. Oreilly, P. Lane, "Remote delivery of video services using mm-waves and optics," J. Lightw. Technol. 12, 369-375 (1994).

P. Rabiei, W. H. Steier, C. Zhang, L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightw. Technol. 20, 1968-1974 (2002).

H. Tazawa, Y. H. Kuo, I. Dunayevskiy, J. Luo, A. K.-Y. Jen, H. R. Fetterman, W. H. Steier, "Ring resonator-based electro-optic polymer traveling-wave modulator," J. Lightw. Technol. 24, 3507-3514 (2006).

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).

Nature Photon. (1)

R. C. J. Hsu, A. Ayazi, B. Houshmand, B. Jalali, "All-dielectric photonic-assisted radio front-end technology," Nature Photon. 1, 535-538 (2007).

Opt. Lett. (1)

Solid-State Electron. (3)

D. A. Cohen, M. Hossein-Zadeh, A. F. J. Levi, "High-Q microphotonic electro-optic modulator," Solid-State Electron. 45, 1577-1589 (2001).

M. Hossein-Zadeh, A. F. J. Levi, "Mb/s data transmission over a RF fiber-optic link using a LiNbO$_{3}$ microdisk optical modulator," Solid-State Electron. 46, 2173-2178 (2002).

M. Hoessein-Zadeh, A. F. J. Levi, "Self-homodyne RF-optical LiNbO$_{3}$ microdisk receiver," Solid-State Electron. 49, 1428-1434 (2005).

Other (1)

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, 2003) pp. 243-251.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.