Abstract

A review is presented on a selection of methods and devices initially developed by the fiber optic, sensing and fiber laser communities which have later found applications in high resolution non-invasive optical imaging. Three avenues have been identified in the modern low coherence interferometry and in the optical coherence tomography technologies which have taken inspiration from fiber optic sensing, fiber optic devices, fiber lasers and fiber optic communications: 1) optical sources; 2) optical configurations; and 3) signal processing. The review will illustrate state of the art examples of concept evolution along these three avenues.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. C. L. Schepens, "The development of ophthalmoscopy," Bull. Soc. Belge Ophthalmol. 2006/4, 16-19 (2006).
  2. R. H. Webb, Noninvasive Diagnostic Techniques in Ophthalmology (Springer-Verlag, 1990) pp. 438-450.
  3. K. Venkateswaran, A. M. Roorda, F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004).
  4. S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, "Partially coherent sources in interferometric sensors," Proc. 1st Int. Conf. Opt. Fibre Sensors (1983) pp. 132-135.
  5. R. C. Youngquist, S. Carr, D. E. N. Davies, "Optical coherence-domain reflectometry: A new optical evaluation technique," Opt. Lett. 12, 158-160 (1987).
  6. A. F. Fercher, K. Mengedoht, W. Werner, "Eye length measurement by interferometry with partially coherent light," Opt. Lett. 13, 186-189 (1988).
  7. T. Sawatari, "Optical heterodyne scanning microscope," Appl. Opt. 12, 2768-2772 (1973).
  8. D. Huang, E. A. Swanson, C. P. Lin, J. P. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
  9. W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
  10. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, D. Stifter, "Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre," Opt. Exp. 14, 1596-1603 (2006).
  11. T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometer," Jpn. J. Appl. Phys. 38, 6133-6137 (1999).
  12. M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Exp. 11, 2183-2189 (2003).
  13. Y. Mazurenko, "Optical coherence tomography from viewpoint of information efficiency," Imag. Sci. J. 54, 92-102 (2006).
  14. L. M. Smith, C. C. Dobson, "Absolute displacement measurements using modulation of the spectrum of white light in a michelson interferometer," Appl. Opt. 28, 3339-3342 (1981).
  15. S. Taplin, A. Gh. Podoleanu, D. J. Webb, D. A. Jackson, "Displacement sensor using channeled spectrum dispersed on a linear CCD array," Electron. Lett. 29, 896-897 (1993).
  16. A. Gh. Podoleanu, S. Taplin, D. J. Webb, D. A. Jackson, "Channeled spectrum display using a CCD array for student laboratory demonstrations," Eur. J. Phys. 15, 266-271 (1994).
  17. Y. Chen, L. N. Vuong, J. Liu, J. Ho, V. J. Srinivasan, I. Gorczynska, A. J. Witkin, J. S. Duker, J. Schuman, J. G. Fujimoto, "Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration," Opt. Exp. 17, 4046-4060 (2009).
  18. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Exp. 12, 2404-2422 (2004).
  19. C. K. Hitzenberger, P. Trost, P. Lo, Q. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Exp. 11, 2753-2761 (2003).
  20. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, J. G. Fujimoto, "Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70 000 to 312 500 axial scans per second," Opt. Exp. 16, 15149-15169 (2008).
  21. S. Moon, D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Exp. 14, 11575-11584 (2006).
  22. R. Huber, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236, 000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007).
  23. A. Gh. Podoleanu, "Unique interpretation of talbot bands and Fourier domain white light interferometry," Opt. Exp. 15, 9867-9876 (2007).
  24. A. Gh. Podoleanu, R. B. Rosen, "Combinations of techniques in imaging the retina with high resolution,," Progr. Retinal Eye Res. 27, 464-499 (2008).
  25. J. K. Barton, S. Tang, R. Lim, B. J. Tromberg, "Simultaneous optical coherence and multiphoton microscopy of skin-equivalent tissue models," Proc. SPIE (2007) pp. X6270-X6270.
  26. G. Genty, S. Coen, J. M. Dudley, "Fiber supercontinuum sources," J. Opt. Soc. Amer. B 24, 1771-1785 (2007).
  27. A. B. Lobo Ribeiro, M. Melo, J. R. Salcedo, "Optical fiber sources for measurement and imaging," Proc. SPIE 7139 (2008).
  28. J. Price, W. Belardi, T. Monro, A. Malinowski, A. Piper, D. Richardson, "Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source," Opt. Exp. 10, 382-387 (2002).
  29. M. A. Choma, K. Hsu, J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J Biomed. Opt. (2005) 10$\_$4, 044009$\_$pp. 044009-1 to 044009-6.
  30. R. Huber, M. Wojtkowski, J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Exp. 14, 3225-3237 (2006).
  31. R. Huber, D. C. Adler, J. G. Fujimoto, "Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370, 000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
  32. C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, "Subharmonic Fourier domain mode locking," Opt. Lett. 34, 725-727 (2009).
  33. W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
  34. Y. Mao, C. Flueraru, S. Sherif, S. Chang, "High performance wavelength-swept laser with mode-locking technique for optical coherence tomography," Opt. Commun. 282, 88-92 (2009).
  35. K. Shimizu, T. Horiguchi, Y. Koyamada, "Frequency translation of light waves by propagation around an optical ring circuit containing a frequency shifter: 1. Experiment," Appl. Opt. 32, 6718-6726 (1993).
  36. F. D. Nielsen, L. Thrane, J. F. Black, A. Bjarklev, P. E. Andersen, "Swept wavelength source in the 1 $\mu$m range," Opt. Exp. 13, 4096-4106 (2005).
  37. K. Goda, D. R. Solli, B. Jalali, "Real-time optical reflectometry enabled by amplified dispersive Fourier transformation," Appl. Phys Lett. 93, (2008) pp. 031106-1 to 031106-3.
  38. H. Kakuma, K. Ohbayashi, Y. Arakawa, "Optical imaging of hard and soft dental tissue using discretely swept optical frequency domain reflectometry optical coherence tomography at wavelengths from 1560 to 1600 nm," J. Biomed. Opt. 13, 14012- (2008).
  39. B. Považay, B. Hofer, B. Hermann, C. Torti, V. Kajić, A. Unterhuber, W. Drexler, "High-speed high-resolution optical coherence tomography at 800 and 1060 nm," Proc. SPIE .
  40. K. Takada, A. Himeno, K. Yukimatsu, "Phase-noise and shot-noise operations of low coherence optical time domain reflectometry," Appl. Phys. Lett 59, 2483-2485 (1991).
  41. A. Gh. Podoleanu, "Unbalanced versus balanced operation in an OCT system," Appl. Opt. 39, 173-182 (2000).
  42. A. Gh. Podoleanu, G. M. Dobre, D. J. Webb, D. A. Jackson, "Coherence imaging by use of a newton rings sampling function," Opt. Lett. 21, 1789-1791 (1996).
  43. A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry," J. Biomed. Opt. 3, 12-20 (1998).
  44. A. Gh. Podoleanu, D. A. Jackson, "Combined optical coherence tomograph and scanning laser ophthalmoscope," Electron. Lett. 34, 1088-1090 (1998).
  45. A. Gh. Podoleanu, G. M. Dobre, R. Cernat, J. A. Rogers, J. Pedro, R. B. Rosen, P. Garcia, "Investigations of the eye fundus using a simultaneous optical coherence tomography/indocyanine green fluorescence imaging system," J. Biomed. Opt. 12, 014019- (2007).
  46. R. B. Rosen, P. Garcia, A. Gh. Podoleanu, R. G. Cucu, G. Dobre, M. E. J. Van Velthoven, M. D. de Smet, J. A. Rogers, M. Hathaway, J. Pedro, R. Weitz, Optical Coherence Tomography Technology and Applications, Series: Biological and Medical Physics, Biomedical Engineering (Springer, 2008) pp. 448-474.
  47. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
  48. D. C. Adler, C. Zhou, T.-H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, J. G. Fujimoto, "Three-dimensional endomicroscopy of the human colon using optical coherence tomography," Opt. Exp. 17, 784-796 (2009).
  49. J. Su, J. Zhang, L. Yu, Z. Chen, "In vivo three -dimensional microelectromechanical endoscopic swept source optical coherence tomography," Opt. Exp. 15, 10390-10396 (2007).
  50. T. Wu, Z. Ding, K. Wang, M. Chen, C. Wang, "Two-dimensional scanning realized by an asymmetry fiber cantilever driven by single piezo bender actuator for optical coherence tomography," Opt. Exp. 17, 13819-13829 (2009).
  51. J. M. Tam, L. Song, D. R. Walt, "Fabrication and optical characterization of imaging fiber-based nanoarrays," J. Nanosci. Nanotechnol. 67, 498-502 (2005).
  52. J. Calatroni, C. Froehly, H. Al Mawie, "Transmission d'image en couleurs dans une seule fibre optique," Appl. Opt. 26, 2206-2212 (1987).
  53. J. E. Calatroni, P. Sandoz, G. Tribillon, "Surface profiling by means of double spectral modulation," Appl. Opt. 32, 30-37 (1993).
  54. D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, G. J. Tearney, "Spectral-domain spectrally-encoded endoscopy," Opt. Exp. 15, 2432-2444 (2007).
  55. L. Fu, X. Gan, M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Exp. 13, 5528-5534 (2005).
  56. J. Gamelin, Y. Yang, N. Biswal, Y. Chen, S. Yan, X. Zhang, M. Karemeddini, Q. Zhu, "A prototype hybrid intraoperative probe for ovarian cancer detection," Opt. Exp. 17, 7245-7258 (2009).
  57. M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Amer. B 9, 903-908 (1992).
  58. G. Yao, L. V. Wang, "Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography," Opt. Lett. 24, 537-539 (1999).
  59. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, "Two dimensional birefringence imaging in biological tissue by polarization -sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
  60. M. G. Ducros, J. D. Marsack, H. G. Grady Rylander III, S. L. Thomsen, T. E. Milner, "Primate retina imaging with polarization-sensitive optical coherence tomography," J. Opt. Soc Am. A 18, 2945-2956 (2001).
  61. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, J. S. Nelson, "High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1358 (2000).
  62. S. Jiao, W. Yu, G. Stoica, L. Wang, "Optical-fiber based Mueller optical coherence tomography," Opt. Lett. 28, 1206-1208 (2003).
  63. J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, J. A. Izatt, "Simplified method for polarization—sensitive optical coherence tomography," Opt. Lett. 26, 1069-1071 (2001).
  64. J. Zhang, S. Guo, W. Jung, J. Stuart Nelson, Z. Chen, "Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibres," Opt. Exp. 11, 3262-3270 (2003).
  65. J. F. de Boer, S. M. Srinivas, B. Hyle Park, T. H. Pham, Z. Chen, T. E. Milner, J. Stuart Nelson, "Polarization effects in optical coherence tomography of various biological tissues," IEEE J. Sel. Top. In Quatum Electron. 5, 1200-1204 (1999).
  66. H. F. Hazebroek, A. A. Holscher, "Interferometric ellipsometry," J. Phys. E: Sci. Instrum. 6, 822-826 (1973).
  67. K. Schoenenberger, B. W. Colston Jr., D. J. Maitland, L. B. da Silva, M. J. Everett, "Mapping of birefringence and thermal damage in tissue by use of polarization sensitive optical coherence tomography," Appl. Opt. 37, 6026-6036 (1998).
  68. R. G. Cucu, J. Pedro, R. B. Rosen, A. Gh. Podoleanu, "Polarization-sensitive OCT system using single-mode fiber," Proc. SPIE (2004) pp. 170-177.
  69. Z. A. Yasa, N. M. Amer, "A rapid-scanning autocorrelation scheme for continuous monitoring of picosecond laser pulses," Opt. Comm. 36, 406-408 (1981).
  70. K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, "400 Hz mechanical scanning optical delay line," Opt. Lett. 18, 558-560 (1993).
  71. G. Tearney, B. Bouma, J. Fujimoto, "High-speed phase- and group-delay scanning with a grating based phase control delay line," Opt. Lett. 22, 1811-1813 (1997).
  72. C. C. Rosa, J. Rogers, A. G. Podoleanu, "Fast scanning transmissive delay line for optical coherence tomography," Opt. Lett. 30, 3263-3265 (2005).
  73. A. Bradu, L. Ma, J. Bloor, A. Podoleanu, "Using en-face optical coherence tomography to analyse gene function in Drosophila Melanogaster larval heart," Proc. SPIE 7139 (2008).
  74. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
  75. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, J. S. Werner, "Adaptive optics-optical coherence tomography: Optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Amer. A 24, 1373-1383 (2007).
  76. D. Hammer, D. Ferguson, N. Iftimia, T. E. Ustun, V. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, J. Schuman, "Advanced scanning methods with tracking optical coherence tomography," Opt. Exp. 13, 7937-7947 (2005).
  77. M. Pircher, B. Baumann, E. Goetzinger, H. Sattmann, C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction," Opt. Exp. 15, 16922-16932 (2007).
  78. D. Pan, G. M. Lanza, S. A. Wickline, S. D. Caruthers, "Nanomedicine: Perspective and promises with ligand-directed molecular imaging," Eur. J. Radiology 70, 274-285 (2009).
  79. M. C. Pierce, D. J. Javier, R. Richards-Kortum, "Optical contrast agents and imaging systems for detection and diagnosis of cancer," Int. J. Cancer 123, 1979-1990 (2008).
  80. T. S. Troutman, J. K. Barton, M. Romanowski, "Optical coherence tomography with plasmon resonant nanorods of gold," Opt. Lett. 32, 1438-1440 (2007).
  81. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Exp. 13, 10652-10664 (2005).
  82. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, Y. Yasuno, "Optical coherence angiography," Opt. Exp. 14, 7821-7840 (2006).
  83. D. L. Marks, T. S. Ralston, S. A. Boppart, Optical Coherence Tomography Technology and Applications, Series: Biological and Medical Physics, Biomedical Engineering (Springer, 2008) pp. 405-428.
  84. M. Wojtkowski, A. Kowalczyk, P. Targowski, I. Gorczynska, "Fourier-domain optical coherence tomography: Next step in optical imaging," Opt. Appl. XXXII, 569-580 (2002).
  85. T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, R. Noé, "Coherent optical communication: Towards realtime systems at 40 Gbit/s and beyond," Opt. Exp. 16, 866-872 (2008).
  86. M. C. Tomic, J. M. Elazar, Z. V. Djinovic, "Low-coherence interferometric method for measurement of displacement based on a 3$\,\times\,$3 fibre-optic directional coupler," Opt. A: Pure Appl. Opt. 4, S381-S386 (2002).
  87. M. V. Sarunic, M. A. Choma, C. H. Yang, J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3$\, \times \,$3 fiber couplers," Opt. Exp. 13, 957-967 (2005).
  88. J. Zhang, J. S. Nelson, Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
  89. A. B. Vakhtin, K. A. Peterson, D. J. Kane, "Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram," Opt. Lett. 31, 1271-1273 (2006).
  90. R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054103- (2007).
  91. L. An, R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt. Lett. 32, 3423-3425 (2007).
  92. A. H. Bachmann, R. A. Leitgeb, T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Exp. 14, 1487-1496 (2006).
  93. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Exp. 17, 7-24 (2009).
  94. F. Talbot, "An experiment on the interference of light," Philos. Mag. 10, 364- (1837).
  95. G. B. Airy, "The bakerian lecture—on the theoretical explanation of an apparent new polarity of light," Phil. Trans. R. Soc. London 130, 225-244 (1840).
  96. M. P. Givens, "Talbot's bands," Am. J. Phys. 61, 601-605 (1993).
  97. D. Woods, A. Gh. Podoleanu, "Controlling the shape of Talbot bands' visibility," Opt. Exp. 16, 9654-9670 (2008).
  98. A. Gh. Podoleanu, S. Taplin, D. J. Webb, D. A. , Jackson, "Theoretical study of talbot-like bands observed using a laser diode below threshold," J. Pure Appl. Opt. 7, 517-536 (1998).
  99. A. Gh. Podoleanu, D. J. Woods, "Power efficient FDOCT setup for selection in the optical path difference sign using Talbot bands," Opt. Lett. 32, 2300-2302 (2007).

2009 (8)

Y. Chen, L. N. Vuong, J. Liu, J. Ho, V. J. Srinivasan, I. Gorczynska, A. J. Witkin, J. S. Duker, J. Schuman, J. G. Fujimoto, "Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration," Opt. Exp. 17, 4046-4060 (2009).

C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, "Subharmonic Fourier domain mode locking," Opt. Lett. 34, 725-727 (2009).

Y. Mao, C. Flueraru, S. Sherif, S. Chang, "High performance wavelength-swept laser with mode-locking technique for optical coherence tomography," Opt. Commun. 282, 88-92 (2009).

D. C. Adler, C. Zhou, T.-H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, J. G. Fujimoto, "Three-dimensional endomicroscopy of the human colon using optical coherence tomography," Opt. Exp. 17, 784-796 (2009).

T. Wu, Z. Ding, K. Wang, M. Chen, C. Wang, "Two-dimensional scanning realized by an asymmetry fiber cantilever driven by single piezo bender actuator for optical coherence tomography," Opt. Exp. 17, 13819-13829 (2009).

J. Gamelin, Y. Yang, N. Biswal, Y. Chen, S. Yan, X. Zhang, M. Karemeddini, Q. Zhu, "A prototype hybrid intraoperative probe for ovarian cancer detection," Opt. Exp. 17, 7245-7258 (2009).

D. Pan, G. M. Lanza, S. A. Wickline, S. D. Caruthers, "Nanomedicine: Perspective and promises with ligand-directed molecular imaging," Eur. J. Radiology 70, 274-285 (2009).

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Exp. 17, 7-24 (2009).

2008 (7)

T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, R. Noé, "Coherent optical communication: Towards realtime systems at 40 Gbit/s and beyond," Opt. Exp. 16, 866-872 (2008).

D. Woods, A. Gh. Podoleanu, "Controlling the shape of Talbot bands' visibility," Opt. Exp. 16, 9654-9670 (2008).

M. C. Pierce, D. J. Javier, R. Richards-Kortum, "Optical contrast agents and imaging systems for detection and diagnosis of cancer," Int. J. Cancer 123, 1979-1990 (2008).

K. Goda, D. R. Solli, B. Jalali, "Real-time optical reflectometry enabled by amplified dispersive Fourier transformation," Appl. Phys Lett. 93, (2008) pp. 031106-1 to 031106-3.

H. Kakuma, K. Ohbayashi, Y. Arakawa, "Optical imaging of hard and soft dental tissue using discretely swept optical frequency domain reflectometry optical coherence tomography at wavelengths from 1560 to 1600 nm," J. Biomed. Opt. 13, 14012- (2008).

A. Gh. Podoleanu, R. B. Rosen, "Combinations of techniques in imaging the retina with high resolution,," Progr. Retinal Eye Res. 27, 464-499 (2008).

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, J. G. Fujimoto, "Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70 000 to 312 500 axial scans per second," Opt. Exp. 16, 15149-15169 (2008).

2007 (12)

G. Genty, S. Coen, J. M. Dudley, "Fiber supercontinuum sources," J. Opt. Soc. Amer. B 24, 1771-1785 (2007).

R. Huber, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236, 000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007).

A. Gh. Podoleanu, "Unique interpretation of talbot bands and Fourier domain white light interferometry," Opt. Exp. 15, 9867-9876 (2007).

T. S. Troutman, J. K. Barton, M. Romanowski, "Optical coherence tomography with plasmon resonant nanorods of gold," Opt. Lett. 32, 1438-1440 (2007).

D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, G. J. Tearney, "Spectral-domain spectrally-encoded endoscopy," Opt. Exp. 15, 2432-2444 (2007).

J. Su, J. Zhang, L. Yu, Z. Chen, "In vivo three -dimensional microelectromechanical endoscopic swept source optical coherence tomography," Opt. Exp. 15, 10390-10396 (2007).

A. Gh. Podoleanu, G. M. Dobre, R. Cernat, J. A. Rogers, J. Pedro, R. B. Rosen, P. Garcia, "Investigations of the eye fundus using a simultaneous optical coherence tomography/indocyanine green fluorescence imaging system," J. Biomed. Opt. 12, 014019- (2007).

A. Gh. Podoleanu, D. J. Woods, "Power efficient FDOCT setup for selection in the optical path difference sign using Talbot bands," Opt. Lett. 32, 2300-2302 (2007).

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, J. S. Werner, "Adaptive optics-optical coherence tomography: Optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Amer. A 24, 1373-1383 (2007).

M. Pircher, B. Baumann, E. Goetzinger, H. Sattmann, C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction," Opt. Exp. 15, 16922-16932 (2007).

R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054103- (2007).

L. An, R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt. Lett. 32, 3423-3425 (2007).

2006 (9)

A. H. Bachmann, R. A. Leitgeb, T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Exp. 14, 1487-1496 (2006).

A. B. Vakhtin, K. A. Peterson, D. J. Kane, "Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram," Opt. Lett. 31, 1271-1273 (2006).

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, Y. Yasuno, "Optical coherence angiography," Opt. Exp. 14, 7821-7840 (2006).

R. Huber, M. Wojtkowski, J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Exp. 14, 3225-3237 (2006).

R. Huber, D. C. Adler, J. G. Fujimoto, "Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370, 000 lines/s," Opt. Lett. 31, 2975-2977 (2006).

S. Moon, D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Exp. 14, 11575-11584 (2006).

Y. Mazurenko, "Optical coherence tomography from viewpoint of information efficiency," Imag. Sci. J. 54, 92-102 (2006).

C. L. Schepens, "The development of ophthalmoscopy," Bull. Soc. Belge Ophthalmol. 2006/4, 16-19 (2006).

G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, D. Stifter, "Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre," Opt. Exp. 14, 1596-1603 (2006).

2005 (10)

M. A. Choma, K. Hsu, J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J Biomed. Opt. (2005) 10$\_$4, 044009$\_$pp. 044009-1 to 044009-6.

W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).

J. M. Tam, L. Song, D. R. Walt, "Fabrication and optical characterization of imaging fiber-based nanoarrays," J. Nanosci. Nanotechnol. 67, 498-502 (2005).

L. Fu, X. Gan, M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Exp. 13, 5528-5534 (2005).

F. D. Nielsen, L. Thrane, J. F. Black, A. Bjarklev, P. E. Andersen, "Swept wavelength source in the 1 $\mu$m range," Opt. Exp. 13, 4096-4106 (2005).

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Exp. 13, 10652-10664 (2005).

C. C. Rosa, J. Rogers, A. G. Podoleanu, "Fast scanning transmissive delay line for optical coherence tomography," Opt. Lett. 30, 3263-3265 (2005).

D. Hammer, D. Ferguson, N. Iftimia, T. E. Ustun, V. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, J. Schuman, "Advanced scanning methods with tracking optical coherence tomography," Opt. Exp. 13, 7937-7947 (2005).

M. V. Sarunic, M. A. Choma, C. H. Yang, J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3$\, \times \,$3 fiber couplers," Opt. Exp. 13, 957-967 (2005).

J. Zhang, J. S. Nelson, Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).

2004 (3)

W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).

K. Venkateswaran, A. M. Roorda, F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004).

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Exp. 12, 2404-2422 (2004).

2003 (5)

C. K. Hitzenberger, P. Trost, P. Lo, Q. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Exp. 11, 2753-2761 (2003).

M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Exp. 11, 2183-2189 (2003).

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).

S. Jiao, W. Yu, G. Stoica, L. Wang, "Optical-fiber based Mueller optical coherence tomography," Opt. Lett. 28, 1206-1208 (2003).

J. Zhang, S. Guo, W. Jung, J. Stuart Nelson, Z. Chen, "Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibres," Opt. Exp. 11, 3262-3270 (2003).

2002 (3)

J. Price, W. Belardi, T. Monro, A. Malinowski, A. Piper, D. Richardson, "Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source," Opt. Exp. 10, 382-387 (2002).

M. C. Tomic, J. M. Elazar, Z. V. Djinovic, "Low-coherence interferometric method for measurement of displacement based on a 3$\,\times\,$3 fibre-optic directional coupler," Opt. A: Pure Appl. Opt. 4, S381-S386 (2002).

M. Wojtkowski, A. Kowalczyk, P. Targowski, I. Gorczynska, "Fourier-domain optical coherence tomography: Next step in optical imaging," Opt. Appl. XXXII, 569-580 (2002).

2001 (2)

J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, J. A. Izatt, "Simplified method for polarization—sensitive optical coherence tomography," Opt. Lett. 26, 1069-1071 (2001).

M. G. Ducros, J. D. Marsack, H. G. Grady Rylander III, S. L. Thomsen, T. E. Milner, "Primate retina imaging with polarization-sensitive optical coherence tomography," J. Opt. Soc Am. A 18, 2945-2956 (2001).

2000 (2)

1999 (3)

T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometer," Jpn. J. Appl. Phys. 38, 6133-6137 (1999).

J. F. de Boer, S. M. Srinivas, B. Hyle Park, T. H. Pham, Z. Chen, T. E. Milner, J. Stuart Nelson, "Polarization effects in optical coherence tomography of various biological tissues," IEEE J. Sel. Top. In Quatum Electron. 5, 1200-1204 (1999).

G. Yao, L. V. Wang, "Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography," Opt. Lett. 24, 537-539 (1999).

1998 (4)

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry," J. Biomed. Opt. 3, 12-20 (1998).

A. Gh. Podoleanu, D. A. Jackson, "Combined optical coherence tomograph and scanning laser ophthalmoscope," Electron. Lett. 34, 1088-1090 (1998).

K. Schoenenberger, B. W. Colston Jr., D. J. Maitland, L. B. da Silva, M. J. Everett, "Mapping of birefringence and thermal damage in tissue by use of polarization sensitive optical coherence tomography," Appl. Opt. 37, 6026-6036 (1998).

A. Gh. Podoleanu, S. Taplin, D. J. Webb, D. A. , Jackson, "Theoretical study of talbot-like bands observed using a laser diode below threshold," J. Pure Appl. Opt. 7, 517-536 (1998).

1997 (3)

1996 (1)

1994 (1)

A. Gh. Podoleanu, S. Taplin, D. J. Webb, D. A. Jackson, "Channeled spectrum display using a CCD array for student laboratory demonstrations," Eur. J. Phys. 15, 266-271 (1994).

1993 (5)

1992 (1)

M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Amer. B 9, 903-908 (1992).

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. P. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).

K. Takada, A. Himeno, K. Yukimatsu, "Phase-noise and shot-noise operations of low coherence optical time domain reflectometry," Appl. Phys. Lett 59, 2483-2485 (1991).

1988 (1)

1987 (2)

1981 (2)

Z. A. Yasa, N. M. Amer, "A rapid-scanning autocorrelation scheme for continuous monitoring of picosecond laser pulses," Opt. Comm. 36, 406-408 (1981).

L. M. Smith, C. C. Dobson, "Absolute displacement measurements using modulation of the spectrum of white light in a michelson interferometer," Appl. Opt. 28, 3339-3342 (1981).

1973 (2)

T. Sawatari, "Optical heterodyne scanning microscope," Appl. Opt. 12, 2768-2772 (1973).

H. F. Hazebroek, A. A. Holscher, "Interferometric ellipsometry," J. Phys. E: Sci. Instrum. 6, 822-826 (1973).

1840 (1)

G. B. Airy, "The bakerian lecture—on the theoretical explanation of an apparent new polarity of light," Phil. Trans. R. Soc. London 130, 225-244 (1840).

1837 (1)

F. Talbot, "An experiment on the interference of light," Philos. Mag. 10, 364- (1837).

Am. J. Phys. (1)

M. P. Givens, "Talbot's bands," Am. J. Phys. 61, 601-605 (1993).

Appl. Opt. (7)

Appl. Phys Lett. (1)

K. Goda, D. R. Solli, B. Jalali, "Real-time optical reflectometry enabled by amplified dispersive Fourier transformation," Appl. Phys Lett. 93, (2008) pp. 031106-1 to 031106-3.

Appl. Phys. Lett (1)

K. Takada, A. Himeno, K. Yukimatsu, "Phase-noise and shot-noise operations of low coherence optical time domain reflectometry," Appl. Phys. Lett 59, 2483-2485 (1991).

Appl. Phys. Lett. (1)

R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054103- (2007).

Bull. Soc. Belge Ophthalmol. (1)

C. L. Schepens, "The development of ophthalmoscopy," Bull. Soc. Belge Ophthalmol. 2006/4, 16-19 (2006).

Electron. Lett. (2)

S. Taplin, A. Gh. Podoleanu, D. J. Webb, D. A. Jackson, "Displacement sensor using channeled spectrum dispersed on a linear CCD array," Electron. Lett. 29, 896-897 (1993).

A. Gh. Podoleanu, D. A. Jackson, "Combined optical coherence tomograph and scanning laser ophthalmoscope," Electron. Lett. 34, 1088-1090 (1998).

Eur. J. Phys. (1)

A. Gh. Podoleanu, S. Taplin, D. J. Webb, D. A. Jackson, "Channeled spectrum display using a CCD array for student laboratory demonstrations," Eur. J. Phys. 15, 266-271 (1994).

Eur. J. Radiology (1)

D. Pan, G. M. Lanza, S. A. Wickline, S. D. Caruthers, "Nanomedicine: Perspective and promises with ligand-directed molecular imaging," Eur. J. Radiology 70, 274-285 (2009).

IEEE J. Sel. Top. In Quatum Electron. (1)

J. F. de Boer, S. M. Srinivas, B. Hyle Park, T. H. Pham, Z. Chen, T. E. Milner, J. Stuart Nelson, "Polarization effects in optical coherence tomography of various biological tissues," IEEE J. Sel. Top. In Quatum Electron. 5, 1200-1204 (1999).

Imag. Sci. J. (1)

Y. Mazurenko, "Optical coherence tomography from viewpoint of information efficiency," Imag. Sci. J. 54, 92-102 (2006).

Int. J. Cancer (1)

M. C. Pierce, D. J. Javier, R. Richards-Kortum, "Optical contrast agents and imaging systems for detection and diagnosis of cancer," Int. J. Cancer 123, 1979-1990 (2008).

J Biomed. Opt. (1)

M. A. Choma, K. Hsu, J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J Biomed. Opt. (2005) 10$\_$4, 044009$\_$pp. 044009-1 to 044009-6.

J. Biomed. Opt. (5)

W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).

K. Venkateswaran, A. M. Roorda, F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004).

A. Gh. Podoleanu, G. M. Dobre, R. Cernat, J. A. Rogers, J. Pedro, R. B. Rosen, P. Garcia, "Investigations of the eye fundus using a simultaneous optical coherence tomography/indocyanine green fluorescence imaging system," J. Biomed. Opt. 12, 014019- (2007).

H. Kakuma, K. Ohbayashi, Y. Arakawa, "Optical imaging of hard and soft dental tissue using discretely swept optical frequency domain reflectometry optical coherence tomography at wavelengths from 1560 to 1600 nm," J. Biomed. Opt. 13, 14012- (2008).

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry," J. Biomed. Opt. 3, 12-20 (1998).

J. Nanosci. Nanotechnol. (1)

J. M. Tam, L. Song, D. R. Walt, "Fabrication and optical characterization of imaging fiber-based nanoarrays," J. Nanosci. Nanotechnol. 67, 498-502 (2005).

J. Opt. Soc Am. A (1)

M. G. Ducros, J. D. Marsack, H. G. Grady Rylander III, S. L. Thomsen, T. E. Milner, "Primate retina imaging with polarization-sensitive optical coherence tomography," J. Opt. Soc Am. A 18, 2945-2956 (2001).

J. Opt. Soc. Amer. A (1)

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, J. S. Werner, "Adaptive optics-optical coherence tomography: Optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Amer. A 24, 1373-1383 (2007).

J. Opt. Soc. Amer. B (2)

M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Amer. B 9, 903-908 (1992).

G. Genty, S. Coen, J. M. Dudley, "Fiber supercontinuum sources," J. Opt. Soc. Amer. B 24, 1771-1785 (2007).

J. Phys. E: Sci. Instrum. (1)

H. F. Hazebroek, A. A. Holscher, "Interferometric ellipsometry," J. Phys. E: Sci. Instrum. 6, 822-826 (1973).

J. Pure Appl. Opt. (1)

A. Gh. Podoleanu, S. Taplin, D. J. Webb, D. A. , Jackson, "Theoretical study of talbot-like bands observed using a laser diode below threshold," J. Pure Appl. Opt. 7, 517-536 (1998).

Jpn. J. Appl. Phys. (1)

T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometer," Jpn. J. Appl. Phys. 38, 6133-6137 (1999).

Opt. A: Pure Appl. Opt. (1)

M. C. Tomic, J. M. Elazar, Z. V. Djinovic, "Low-coherence interferometric method for measurement of displacement based on a 3$\,\times\,$3 fibre-optic directional coupler," Opt. A: Pure Appl. Opt. 4, S381-S386 (2002).

Opt. Appl. (1)

M. Wojtkowski, A. Kowalczyk, P. Targowski, I. Gorczynska, "Fourier-domain optical coherence tomography: Next step in optical imaging," Opt. Appl. XXXII, 569-580 (2002).

Opt. Comm. (1)

Z. A. Yasa, N. M. Amer, "A rapid-scanning autocorrelation scheme for continuous monitoring of picosecond laser pulses," Opt. Comm. 36, 406-408 (1981).

Opt. Commun. (1)

Y. Mao, C. Flueraru, S. Sherif, S. Chang, "High performance wavelength-swept laser with mode-locking technique for optical coherence tomography," Opt. Commun. 282, 88-92 (2009).

Opt. Exp. (27)

D. C. Adler, C. Zhou, T.-H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, J. G. Fujimoto, "Three-dimensional endomicroscopy of the human colon using optical coherence tomography," Opt. Exp. 17, 784-796 (2009).

J. Su, J. Zhang, L. Yu, Z. Chen, "In vivo three -dimensional microelectromechanical endoscopic swept source optical coherence tomography," Opt. Exp. 15, 10390-10396 (2007).

T. Wu, Z. Ding, K. Wang, M. Chen, C. Wang, "Two-dimensional scanning realized by an asymmetry fiber cantilever driven by single piezo bender actuator for optical coherence tomography," Opt. Exp. 17, 13819-13829 (2009).

D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, G. J. Tearney, "Spectral-domain spectrally-encoded endoscopy," Opt. Exp. 15, 2432-2444 (2007).

L. Fu, X. Gan, M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Exp. 13, 5528-5534 (2005).

J. Gamelin, Y. Yang, N. Biswal, Y. Chen, S. Yan, X. Zhang, M. Karemeddini, Q. Zhu, "A prototype hybrid intraoperative probe for ovarian cancer detection," Opt. Exp. 17, 7245-7258 (2009).

J. Zhang, S. Guo, W. Jung, J. Stuart Nelson, Z. Chen, "Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibres," Opt. Exp. 11, 3262-3270 (2003).

M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Exp. 11, 2183-2189 (2003).

G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, D. Stifter, "Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre," Opt. Exp. 14, 1596-1603 (2006).

A. Gh. Podoleanu, "Unique interpretation of talbot bands and Fourier domain white light interferometry," Opt. Exp. 15, 9867-9876 (2007).

R. Huber, M. Wojtkowski, J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Exp. 14, 3225-3237 (2006).

J. Price, W. Belardi, T. Monro, A. Malinowski, A. Piper, D. Richardson, "Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source," Opt. Exp. 10, 382-387 (2002).

F. D. Nielsen, L. Thrane, J. F. Black, A. Bjarklev, P. E. Andersen, "Swept wavelength source in the 1 $\mu$m range," Opt. Exp. 13, 4096-4106 (2005).

Y. Chen, L. N. Vuong, J. Liu, J. Ho, V. J. Srinivasan, I. Gorczynska, A. J. Witkin, J. S. Duker, J. Schuman, J. G. Fujimoto, "Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration," Opt. Exp. 17, 4046-4060 (2009).

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Exp. 12, 2404-2422 (2004).

C. K. Hitzenberger, P. Trost, P. Lo, Q. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Exp. 11, 2753-2761 (2003).

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, J. G. Fujimoto, "Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70 000 to 312 500 axial scans per second," Opt. Exp. 16, 15149-15169 (2008).

S. Moon, D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Exp. 14, 11575-11584 (2006).

T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, R. Noé, "Coherent optical communication: Towards realtime systems at 40 Gbit/s and beyond," Opt. Exp. 16, 866-872 (2008).

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Exp. 13, 10652-10664 (2005).

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, Y. Yasuno, "Optical coherence angiography," Opt. Exp. 14, 7821-7840 (2006).

D. Hammer, D. Ferguson, N. Iftimia, T. E. Ustun, V. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, J. Schuman, "Advanced scanning methods with tracking optical coherence tomography," Opt. Exp. 13, 7937-7947 (2005).

M. Pircher, B. Baumann, E. Goetzinger, H. Sattmann, C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction," Opt. Exp. 15, 16922-16932 (2007).

M. V. Sarunic, M. A. Choma, C. H. Yang, J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3$\, \times \,$3 fiber couplers," Opt. Exp. 13, 957-967 (2005).

A. H. Bachmann, R. A. Leitgeb, T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Exp. 14, 1487-1496 (2006).

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Exp. 17, 7-24 (2009).

D. Woods, A. Gh. Podoleanu, "Controlling the shape of Talbot bands' visibility," Opt. Exp. 16, 9654-9670 (2008).

Opt. Lett. (21)

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).

A. Gh. Podoleanu, D. J. Woods, "Power efficient FDOCT setup for selection in the optical path difference sign using Talbot bands," Opt. Lett. 32, 2300-2302 (2007).

L. An, R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt. Lett. 32, 3423-3425 (2007).

J. Zhang, J. S. Nelson, Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).

A. B. Vakhtin, K. A. Peterson, D. J. Kane, "Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram," Opt. Lett. 31, 1271-1273 (2006).

T. S. Troutman, J. K. Barton, M. Romanowski, "Optical coherence tomography with plasmon resonant nanorods of gold," Opt. Lett. 32, 1438-1440 (2007).

R. Huber, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236, 000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007).

R. C. Youngquist, S. Carr, D. E. N. Davies, "Optical coherence-domain reflectometry: A new optical evaluation technique," Opt. Lett. 12, 158-160 (1987).

A. F. Fercher, K. Mengedoht, W. Werner, "Eye length measurement by interferometry with partially coherent light," Opt. Lett. 13, 186-189 (1988).

R. Huber, D. C. Adler, J. G. Fujimoto, "Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370, 000 lines/s," Opt. Lett. 31, 2975-2977 (2006).

C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, "Subharmonic Fourier domain mode locking," Opt. Lett. 34, 725-727 (2009).

W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).

G. Yao, L. V. Wang, "Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography," Opt. Lett. 24, 537-539 (1999).

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, "Two dimensional birefringence imaging in biological tissue by polarization -sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, J. S. Nelson, "High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1358 (2000).

S. Jiao, W. Yu, G. Stoica, L. Wang, "Optical-fiber based Mueller optical coherence tomography," Opt. Lett. 28, 1206-1208 (2003).

J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, J. A. Izatt, "Simplified method for polarization—sensitive optical coherence tomography," Opt. Lett. 26, 1069-1071 (2001).

K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, "400 Hz mechanical scanning optical delay line," Opt. Lett. 18, 558-560 (1993).

G. Tearney, B. Bouma, J. Fujimoto, "High-speed phase- and group-delay scanning with a grating based phase control delay line," Opt. Lett. 22, 1811-1813 (1997).

C. C. Rosa, J. Rogers, A. G. Podoleanu, "Fast scanning transmissive delay line for optical coherence tomography," Opt. Lett. 30, 3263-3265 (2005).

A. Gh. Podoleanu, G. M. Dobre, D. J. Webb, D. A. Jackson, "Coherence imaging by use of a newton rings sampling function," Opt. Lett. 21, 1789-1791 (1996).

Phil. Trans. R. Soc. London (1)

G. B. Airy, "The bakerian lecture—on the theoretical explanation of an apparent new polarity of light," Phil. Trans. R. Soc. London 130, 225-244 (1840).

Philos. Mag. (1)

F. Talbot, "An experiment on the interference of light," Philos. Mag. 10, 364- (1837).

Progr. Retinal Eye Res. (1)

A. Gh. Podoleanu, R. B. Rosen, "Combinations of techniques in imaging the retina with high resolution,," Progr. Retinal Eye Res. 27, 464-499 (2008).

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. P. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).

Other (9)

R. B. Rosen, P. Garcia, A. Gh. Podoleanu, R. G. Cucu, G. Dobre, M. E. J. Van Velthoven, M. D. de Smet, J. A. Rogers, M. Hathaway, J. Pedro, R. Weitz, Optical Coherence Tomography Technology and Applications, Series: Biological and Medical Physics, Biomedical Engineering (Springer, 2008) pp. 448-474.

B. Považay, B. Hofer, B. Hermann, C. Torti, V. Kajić, A. Unterhuber, W. Drexler, "High-speed high-resolution optical coherence tomography at 800 and 1060 nm," Proc. SPIE .

A. Bradu, L. Ma, J. Bloor, A. Podoleanu, "Using en-face optical coherence tomography to analyse gene function in Drosophila Melanogaster larval heart," Proc. SPIE 7139 (2008).

R. G. Cucu, J. Pedro, R. B. Rosen, A. Gh. Podoleanu, "Polarization-sensitive OCT system using single-mode fiber," Proc. SPIE (2004) pp. 170-177.

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, "Partially coherent sources in interferometric sensors," Proc. 1st Int. Conf. Opt. Fibre Sensors (1983) pp. 132-135.

R. H. Webb, Noninvasive Diagnostic Techniques in Ophthalmology (Springer-Verlag, 1990) pp. 438-450.

J. K. Barton, S. Tang, R. Lim, B. J. Tromberg, "Simultaneous optical coherence and multiphoton microscopy of skin-equivalent tissue models," Proc. SPIE (2007) pp. X6270-X6270.

A. B. Lobo Ribeiro, M. Melo, J. R. Salcedo, "Optical fiber sources for measurement and imaging," Proc. SPIE 7139 (2008).

D. L. Marks, T. S. Ralston, S. A. Boppart, Optical Coherence Tomography Technology and Applications, Series: Biological and Medical Physics, Biomedical Engineering (Springer, 2008) pp. 405-428.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.