Abstract

An interrogation scheme based on wavelength-to-time mapping to achieve ultrafast, high-precision, and large dynamic range interrogation of fiber Bragg grating (FBG) sensors is proposed and experimentally demonstrated. The wavelength-to-time mapping, also called temporal self-imaging effect, is realized in the optical domain, using a dispersive element that has a large group velocity dispersion. For a practical dispersive element, higher order dispersions exist, which makes the wavelength-to-time mapping nonlinear. Thus, an interrogation system based on wavelength-to-time mapping without considering the high-order dispersion would reduce the interrogation accuracy. In this paper, for the first time to the best of our knowledge, a mathematical model that incorporates higher order dispersion to achieve an accurate wavelength-to-time mapping is developed, which is then verified by a numerical simulation. An FBG-based strain sensor interrogated based on the developed wavelength-to-time mapping scheme is experimentally investigated. The system has a sampling speed of 48.6 MHz, a dynamic range as large as 20nm, and a sensing accuracy as high as 0.87 $\mu \varepsilon$ for a single-shot measurement.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, "Fiber grating sensors," J. Lightw. Technol. 15, 1442-1463 (1997).
  2. Y. J. Rao, "In-fibre Bragg grating sensor," Meas. Sci. Technol. 8, 355-375 (1997).
  3. A. Othonos, "Fiber Bragg gratings," Rev. Sci. Instrum. 68, 4309-4341 (1997).
  4. S. Yin, P. B. Ruffin, F. T. S. Yu, Fiber Optic Sensors (CRC Press, 2008).
  5. H. Xia, C. Zhang, H. Mu, D. Sun, "Edge technique for direct detection of strain and temperature based on optical time domain reflectometry," Appl. Opt. 48, 189-197 (2009).
  6. M. A. Davis, A. D. Kersey, "All fiber Bragg grating strain sensor demodulation technique using a wavelength division coupler," Electron Lett. 30, 75-76 (1994).
  7. W. Ecke, I. Latka, R. Willsch, A. Reutlinger, R. Graue, "Fibre optic sensor network for spacecraft health monitoring," Meas. Sci. Technol. 12, 974-980 (2001).
  8. A. D. Kersey, T. A. Berkoff, W. W. Morey, "Multiplexed fiber Bragg grating strain sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett. 18, 1370-1372 (1993).
  9. M. G. Xu, H. Geiger, J. L. Archambault, L. Reekie, J. P. Dakin, "Novel interrogation system for fiber Bragg grating sensors using an acousto-optic tunable filter," Electron. Lett. 29, 1510-1511 (1993).
  10. D. A. Jackson, A. B. Lobo Ribeiro, L. Reekie, J. L. Archambault, "Simple multiplexing scheme for a fiber optic grating sensor network," Opt. Lett. 18, 1193-1195 (1993).
  11. M. A. Davis, A. D. Kersey, "Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors," J. Lightw. Technol. 13, 1289-1295 (1995).
  12. A. D. Kersey, T. A. Berkoff, W. W. Morey, "Fiber optic Bragg grating sensor with drift-compensated high resolution interferometric wavelength shift detection," Opt. Lett. 18, 72-74 (1993).
  13. T. Jannson, J. Jannson, "Temporal self-imaging effect in single-mode fibers," J. Opt. Soc. Amer. 71, 1373-1376 (1981).
  14. T. Jannson, "Real-time Fourier transformation in dispersive optical fibers," Opt. Lett. 8, 232-234 (1983).
  15. M. Wojtkowski, V. J. Srinivasan, T. J. Ko, J. G. Fujimoto, A. Kowalczyk, J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Exp. 12, 2404-2422 (2004).
  16. S. Moon, D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Exp. 14, 11575-11584 (2006).
  17. Y. Park, T.-J. Ahn, J.-C. Kieffer, J. Azaña, "Optical frequency domain reflectometry based on real-time Fourier transformation," Opt. Exp. 15, 4598-4617 (2007).
  18. R. E. Saperstein, N. Alic, S. Zamek, K. Ikeda, B. Slutsky, Y. Fainman, "Processing advantages of linear chirped fiber Bragg gratings in the time domain realization of optical frequency-domain reflectometry," Opt. Exp. 15, 15464-15479 (2007).
  19. K. Goda, D. R. Solli, B. Jalali, "Real-time optical reflectometry enabled by amplified dispersive Fourier transformation," Appl. Phys. Lett. 93, 0311061-0311063 (2008).
  20. K. Goda, K. K. Tsia, B. Jalali, "Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena," Nature 458, 1145-1150 (2009).
  21. D. R. Solli, J. Chou, B. Jalali, "Amplified wavelength-time transformation for real-time spectroscopy," Nat. Photon. 2, 48-51 (2008).
  22. J. Chou, D. R. Solli, B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Appl. Phys. Lett. 92, 1111021-1111023 (2008).
  23. M. L. Dennis, J. U. Kang, T.-E. Tsai, I. N. Duling, IIIE. J. Friebele, "Grating sensor array demodulation by use of a passively mode-locked fiber laser," Opt. Lett. 22, 1362-1364 (1997).
  24. H. Y. Fu, H. L. Liu, X. Dong, H. Y. Tam, P. K. A. Wai, C. Lu, "High-speed fibre Bragg grating sensor interrogation using dispersion-compensation fibre," Electron. Lett. 44, 618-619 (2008).
  25. C. Dorrer, "Temporal van Cittert-Zernike theorem and its application to the measurement of chromatic dispersion," J. Opt. Soc. Amer. B 21, 1417-1423 (2004).

2009 (2)

H. Xia, C. Zhang, H. Mu, D. Sun, "Edge technique for direct detection of strain and temperature based on optical time domain reflectometry," Appl. Opt. 48, 189-197 (2009).

K. Goda, K. K. Tsia, B. Jalali, "Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena," Nature 458, 1145-1150 (2009).

2008 (4)

D. R. Solli, J. Chou, B. Jalali, "Amplified wavelength-time transformation for real-time spectroscopy," Nat. Photon. 2, 48-51 (2008).

J. Chou, D. R. Solli, B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Appl. Phys. Lett. 92, 1111021-1111023 (2008).

H. Y. Fu, H. L. Liu, X. Dong, H. Y. Tam, P. K. A. Wai, C. Lu, "High-speed fibre Bragg grating sensor interrogation using dispersion-compensation fibre," Electron. Lett. 44, 618-619 (2008).

K. Goda, D. R. Solli, B. Jalali, "Real-time optical reflectometry enabled by amplified dispersive Fourier transformation," Appl. Phys. Lett. 93, 0311061-0311063 (2008).

2007 (2)

Y. Park, T.-J. Ahn, J.-C. Kieffer, J. Azaña, "Optical frequency domain reflectometry based on real-time Fourier transformation," Opt. Exp. 15, 4598-4617 (2007).

R. E. Saperstein, N. Alic, S. Zamek, K. Ikeda, B. Slutsky, Y. Fainman, "Processing advantages of linear chirped fiber Bragg gratings in the time domain realization of optical frequency-domain reflectometry," Opt. Exp. 15, 15464-15479 (2007).

2006 (1)

S. Moon, D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Exp. 14, 11575-11584 (2006).

2004 (2)

M. Wojtkowski, V. J. Srinivasan, T. J. Ko, J. G. Fujimoto, A. Kowalczyk, J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Exp. 12, 2404-2422 (2004).

C. Dorrer, "Temporal van Cittert-Zernike theorem and its application to the measurement of chromatic dispersion," J. Opt. Soc. Amer. B 21, 1417-1423 (2004).

2001 (1)

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, R. Graue, "Fibre optic sensor network for spacecraft health monitoring," Meas. Sci. Technol. 12, 974-980 (2001).

1997 (4)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, "Fiber grating sensors," J. Lightw. Technol. 15, 1442-1463 (1997).

Y. J. Rao, "In-fibre Bragg grating sensor," Meas. Sci. Technol. 8, 355-375 (1997).

A. Othonos, "Fiber Bragg gratings," Rev. Sci. Instrum. 68, 4309-4341 (1997).

M. L. Dennis, J. U. Kang, T.-E. Tsai, I. N. Duling, IIIE. J. Friebele, "Grating sensor array demodulation by use of a passively mode-locked fiber laser," Opt. Lett. 22, 1362-1364 (1997).

1995 (1)

M. A. Davis, A. D. Kersey, "Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors," J. Lightw. Technol. 13, 1289-1295 (1995).

1994 (1)

M. A. Davis, A. D. Kersey, "All fiber Bragg grating strain sensor demodulation technique using a wavelength division coupler," Electron Lett. 30, 75-76 (1994).

1993 (4)

A. D. Kersey, T. A. Berkoff, W. W. Morey, "Multiplexed fiber Bragg grating strain sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett. 18, 1370-1372 (1993).

M. G. Xu, H. Geiger, J. L. Archambault, L. Reekie, J. P. Dakin, "Novel interrogation system for fiber Bragg grating sensors using an acousto-optic tunable filter," Electron. Lett. 29, 1510-1511 (1993).

D. A. Jackson, A. B. Lobo Ribeiro, L. Reekie, J. L. Archambault, "Simple multiplexing scheme for a fiber optic grating sensor network," Opt. Lett. 18, 1193-1195 (1993).

A. D. Kersey, T. A. Berkoff, W. W. Morey, "Fiber optic Bragg grating sensor with drift-compensated high resolution interferometric wavelength shift detection," Opt. Lett. 18, 72-74 (1993).

1983 (1)

1981 (1)

T. Jannson, J. Jannson, "Temporal self-imaging effect in single-mode fibers," J. Opt. Soc. Amer. 71, 1373-1376 (1981).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. Goda, D. R. Solli, B. Jalali, "Real-time optical reflectometry enabled by amplified dispersive Fourier transformation," Appl. Phys. Lett. 93, 0311061-0311063 (2008).

J. Chou, D. R. Solli, B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Appl. Phys. Lett. 92, 1111021-1111023 (2008).

Electron Lett. (1)

M. A. Davis, A. D. Kersey, "All fiber Bragg grating strain sensor demodulation technique using a wavelength division coupler," Electron Lett. 30, 75-76 (1994).

Electron. Lett. (2)

M. G. Xu, H. Geiger, J. L. Archambault, L. Reekie, J. P. Dakin, "Novel interrogation system for fiber Bragg grating sensors using an acousto-optic tunable filter," Electron. Lett. 29, 1510-1511 (1993).

H. Y. Fu, H. L. Liu, X. Dong, H. Y. Tam, P. K. A. Wai, C. Lu, "High-speed fibre Bragg grating sensor interrogation using dispersion-compensation fibre," Electron. Lett. 44, 618-619 (2008).

J. Lightw. Technol. (2)

M. A. Davis, A. D. Kersey, "Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors," J. Lightw. Technol. 13, 1289-1295 (1995).

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, "Fiber grating sensors," J. Lightw. Technol. 15, 1442-1463 (1997).

J. Opt. Soc. Amer. (1)

T. Jannson, J. Jannson, "Temporal self-imaging effect in single-mode fibers," J. Opt. Soc. Amer. 71, 1373-1376 (1981).

J. Opt. Soc. Amer. B (1)

C. Dorrer, "Temporal van Cittert-Zernike theorem and its application to the measurement of chromatic dispersion," J. Opt. Soc. Amer. B 21, 1417-1423 (2004).

Meas. Sci. Technol. (2)

Y. J. Rao, "In-fibre Bragg grating sensor," Meas. Sci. Technol. 8, 355-375 (1997).

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, R. Graue, "Fibre optic sensor network for spacecraft health monitoring," Meas. Sci. Technol. 12, 974-980 (2001).

Nat. Photon. (1)

D. R. Solli, J. Chou, B. Jalali, "Amplified wavelength-time transformation for real-time spectroscopy," Nat. Photon. 2, 48-51 (2008).

Nature (1)

K. Goda, K. K. Tsia, B. Jalali, "Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena," Nature 458, 1145-1150 (2009).

Opt. Exp. (4)

M. Wojtkowski, V. J. Srinivasan, T. J. Ko, J. G. Fujimoto, A. Kowalczyk, J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Exp. 12, 2404-2422 (2004).

S. Moon, D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Exp. 14, 11575-11584 (2006).

Y. Park, T.-J. Ahn, J.-C. Kieffer, J. Azaña, "Optical frequency domain reflectometry based on real-time Fourier transformation," Opt. Exp. 15, 4598-4617 (2007).

R. E. Saperstein, N. Alic, S. Zamek, K. Ikeda, B. Slutsky, Y. Fainman, "Processing advantages of linear chirped fiber Bragg gratings in the time domain realization of optical frequency-domain reflectometry," Opt. Exp. 15, 15464-15479 (2007).

Opt. Lett. (5)

Rev. Sci. Instrum. (1)

A. Othonos, "Fiber Bragg gratings," Rev. Sci. Instrum. 68, 4309-4341 (1997).

Other (1)

S. Yin, P. B. Ruffin, F. T. S. Yu, Fiber Optic Sensors (CRC Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.