Abstract

We show that the performance of phase-noise-compensated optical-frequency-domain reflectometry (PNC-OFDR) is affected by the acoustic phase noise caused by environmental acoustic perturbations applied to test fibers. When both the auxiliary interferometer and the fiber under test are insulated against acoustic perturbation, the theoretical spatial resolution is obtained. This means that a laser-induced phase noise compensation scheme with a concatenative reference method (CRM) works almost ideally and eliminates the phase noise even over a 40-km range, with 16-fold concatenation. We also reveal that even when we use a laser with a very narrow linewidth of a few kHz, the phase noise of the laser remains a dominant factor in performance degradation, and the CRM works effectively over the range. Test results for an actual fiber cable installed in underground show that there was no severe degradation in performance, and that PNC-OFDR sustained its unique high resolution in actual field use.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. M. K. Barnoski, S. M. Jensen, "Rayleigh scattering on an optical fiber," Appl. Opt. 15, 2112-2115 (1976).
  2. W. Eickhoff, R. Ulrich, "Optical frequency domain reflectometry in single-mode fiber," Appl. Phys. Lett. 39, 693-695 (1981).
  3. H. Barfuss, E. Brinkmeyer, "Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems," J. Lightw. Technol. 7, 3-10 (1989).
  4. B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, "High resolution optical frequency domain reflectometry for characterization of components and assemblies," Opt. Exp. 13, 666-674 (2005).
  5. G. Mussi, N. Gisin, R. Passy, J. P. von der Weid, "$-152.5$ dB sensitivity high dynamic-range optical frequency-domain reflectometry," Electron. Lett. 32, 926-927 (1996).
  6. H. Dong, P. Shum, J. Q. Zhou, G. X. Ning, Y. D. Gong, C. Q. Wu, "Spectral-resolved backreflection measurement of polarization mode dispersion in optical fibers," Opt. Lett. 32, 1665-1667 (2007).
  7. A. Galtarossa, D. Grosso, L. Palmieri, L. Schenato, "Distributed polarization-mode-dispersion measurement in fiber links by polarization-sensitive reflectometric techniques," IEEE Photon. Technol. Lett. 20, 1944-1946 (2008).
  8. S. Venkatesh, W. V. Sorin, "Phase noise consideration in coherent optical FMCW reflectometry," J. Lightw. Technol. 11, 1694-1700 (1993).
  9. K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, "Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator," IEEE Photon. Technol. Lett. 7, 804-806 (1995).
  10. K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, "Spatial resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearization," Electron. Lett. 33, 408-410 (1997).
  11. Y. Koshikiya, X. Fan, F. Ito, "Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser," J. Lightw. Technol. 26, 3287-3294 (2008).
  12. X. Fan, Y. Koshikiya, F. Ito, "Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method," Opt. Lett. 32, 3227-3229 (2007).
  13. X. Fan, Y. Koshikiya, F. Ito, "Phase-noise-compensated optical frequency-domain reflectometry," J. Quantum Electron. 45, 594-602 (2009).
  14. Y. Koshikiya, X. Fan, F. Ito, "40-km range, 1-m resolution measurement based on phase-noise-compensated coherent optical frequency domain reflectometry," Proc. 34th Eur. Conf. Opt. Commun. (2008) pp. 21-22.
  15. X. Fan, Y. Koshikiya, F. Ito, "Highly sensitive reflectometry over 20 km with submeter spatial resolution based on phase-noise-compensated optical frequency domain reflectometry and concatenative reference method," Proc. 19th Int. Conf. Opt. Fibre Sens. (2008) pp. 7004 3L.

2009 (1)

X. Fan, Y. Koshikiya, F. Ito, "Phase-noise-compensated optical frequency-domain reflectometry," J. Quantum Electron. 45, 594-602 (2009).

2008 (2)

Y. Koshikiya, X. Fan, F. Ito, "Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser," J. Lightw. Technol. 26, 3287-3294 (2008).

A. Galtarossa, D. Grosso, L. Palmieri, L. Schenato, "Distributed polarization-mode-dispersion measurement in fiber links by polarization-sensitive reflectometric techniques," IEEE Photon. Technol. Lett. 20, 1944-1946 (2008).

2007 (2)

2005 (1)

B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, "High resolution optical frequency domain reflectometry for characterization of components and assemblies," Opt. Exp. 13, 666-674 (2005).

1997 (1)

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, "Spatial resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearization," Electron. Lett. 33, 408-410 (1997).

1996 (1)

G. Mussi, N. Gisin, R. Passy, J. P. von der Weid, "$-152.5$ dB sensitivity high dynamic-range optical frequency-domain reflectometry," Electron. Lett. 32, 926-927 (1996).

1995 (1)

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, "Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator," IEEE Photon. Technol. Lett. 7, 804-806 (1995).

1993 (1)

S. Venkatesh, W. V. Sorin, "Phase noise consideration in coherent optical FMCW reflectometry," J. Lightw. Technol. 11, 1694-1700 (1993).

1989 (1)

H. Barfuss, E. Brinkmeyer, "Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems," J. Lightw. Technol. 7, 3-10 (1989).

1981 (1)

W. Eickhoff, R. Ulrich, "Optical frequency domain reflectometry in single-mode fiber," Appl. Phys. Lett. 39, 693-695 (1981).

1976 (1)

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Eickhoff, R. Ulrich, "Optical frequency domain reflectometry in single-mode fiber," Appl. Phys. Lett. 39, 693-695 (1981).

Electron. Lett. (2)

G. Mussi, N. Gisin, R. Passy, J. P. von der Weid, "$-152.5$ dB sensitivity high dynamic-range optical frequency-domain reflectometry," Electron. Lett. 32, 926-927 (1996).

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, "Spatial resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearization," Electron. Lett. 33, 408-410 (1997).

IEEE Photon. Technol. Lett. (2)

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, "Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator," IEEE Photon. Technol. Lett. 7, 804-806 (1995).

A. Galtarossa, D. Grosso, L. Palmieri, L. Schenato, "Distributed polarization-mode-dispersion measurement in fiber links by polarization-sensitive reflectometric techniques," IEEE Photon. Technol. Lett. 20, 1944-1946 (2008).

J. Lightw. Technol. (3)

S. Venkatesh, W. V. Sorin, "Phase noise consideration in coherent optical FMCW reflectometry," J. Lightw. Technol. 11, 1694-1700 (1993).

H. Barfuss, E. Brinkmeyer, "Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems," J. Lightw. Technol. 7, 3-10 (1989).

Y. Koshikiya, X. Fan, F. Ito, "Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser," J. Lightw. Technol. 26, 3287-3294 (2008).

J. Quantum Electron. (1)

X. Fan, Y. Koshikiya, F. Ito, "Phase-noise-compensated optical frequency-domain reflectometry," J. Quantum Electron. 45, 594-602 (2009).

Opt. Exp. (1)

B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, "High resolution optical frequency domain reflectometry for characterization of components and assemblies," Opt. Exp. 13, 666-674 (2005).

Opt. Lett. (2)

Other (2)

Y. Koshikiya, X. Fan, F. Ito, "40-km range, 1-m resolution measurement based on phase-noise-compensated coherent optical frequency domain reflectometry," Proc. 34th Eur. Conf. Opt. Commun. (2008) pp. 21-22.

X. Fan, Y. Koshikiya, F. Ito, "Highly sensitive reflectometry over 20 km with submeter spatial resolution based on phase-noise-compensated optical frequency domain reflectometry and concatenative reference method," Proc. 19th Int. Conf. Opt. Fibre Sens. (2008) pp. 7004 3L.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.