Abstract

sThe interrogation of a Fabry–Perot cavity through a dual wavelength Raman fiber laser is reported. The proposed sensing system is based on the use of a dual wavelength Raman fiber laser to generate two quadrature phase-shifted signals that allow the recovery of the temperature change sensed by the Fabry–Perot interferometric cavity. The dual wavelength Raman fiber laser is based on fiber Bragg gratings combined with a distributed mirror. The Fabry–Perot cavity is fabricated by splicing a short length of a suspended-core microstructured fiber to a single mode fiber. The use of this sensing system allows a passive and accurate interrogation of the temperature, while taking advantage of the Rayleigh scattering growth as a distributed mirror in the laser.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. K. T. V. Grattan, T. Sun, "Fiber optic sensor technology: An overview," Sens. Act. A 82, 40-61 (2000).
  2. E. Li, X. Wang, C. Zhang, "Fiber-optic temperature sensor based on interference of selective higher-order modes," App. Phys. Lett. 89, 0.91119-1-091119-3 (2006).
  3. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
  4. A. S. Webb, F. Poletti, D. J. Richardson, J. K. Sahu, "Suspended-core holey fiber for evanescent-field sensing," Optics Eng. 46, 010503-1-010503-3 (2007).
  5. S. Selleri, E. Coscelli, M. Sozzi, A. Cucinotta, F. Poli, D. Passaro, "Air-suspended solid-core fibers for sensing," Proc. Opt. Sens. Conf. (2007) pp. 73561L-73561L-8.
  6. I. Dicaire, J. C. Beugnot, L. Thévenaz, "Suspended-core fibres as optical gas sensing cells: Study and implementation," Proc. Photon. Eur. Conf. (2009) pp. 73570U-.
  7. O. Frazao, J. M. Baptista, J. L. Santos, J. Kobelke, K. Schuster, "Strain and temperature characterization of sensing head based on a suspended-core fibre in Sagnac interferometer," Electron. Lett. 44, 1455-1456 (2008).
  8. O. Frazao, J. M. Baptista, J. L. Santos, J. Kobelke, K. Schuster, "Refractive index tip sensor based on Fabry–Perot cavities formed as a suspended-core fibre," J. Eur. Opt., Soc. 4, 09041- (2009).
  9. Y. J. Rao, "Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors," Opt. Fiber Technol. 12, 227-237 (2006).
  10. T. Wang, S. Zheng, Z. Yang, "A high precision displacement sensor using a low-finesse fiber-optic Fabry-Pérot interferometer," Sens. Act. A 69, 134-138 (1998).
  11. Y. Lo, J. Sirkis, C. Chang, "Passive signal processing of in-line fiber etalon sensors for high strain rate loading," J. Lightw. Technol. 15, 1578-1586 (1997).
  12. Z. Huang, Y. Zhu, X. Chen, A. Wang, "Intrinsic Fabry–Perot fiber sensor for temperature and strain measurements," IEEE Photon. Technol. Lett. 17, 2403-2405 (2005).
  13. T. Wei, Y. Han, Y. Li, H. Tsai, H. Xiao, "Temperature-insensitive miniaturized fiber inline Fabry–Perot interferometer for highly sensitive refractive index measurement," Opt. Exp. 16, 5764-5769 (2008).
  14. H. Y. Choi, K. S. Park, S. J. Park, U. Paek, B. H. Lee, E. S. Choi, "Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry–Perot interferometer," Opt. Lett. 33, 2455-2457 (2008).
  15. O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, K. Schuster, "Fabry-Pérot cavity based on a suspended-core fiber for strain and temperature measurement," IEEE Photon. Technol. Lett. 21, 1229-1231 (2009).
  16. M. Dalhem, J. L. Santos, L. A. Ferreira, F. M. Araújo, "Passive interrogation of low-finesse Fabry–Perot Cavities using fiber Bragg gratings," IEEE Photon. Technol. Lett. 13, 990-992 (2001).
  17. A. T. Alavie, S. E. Karr, A. Othonos, R. M. Measures, "A multiplexed Bragg grating fiber laser sensor system," IEEE Photon. Technol. Lett. 5, 1112-4 (1993).
  18. E. Achaerandio, S. Jarabo, S. Abad, M. López-Amo, "New WDM amplified network for optical sensor multiplexing," IEEE Photon. Technol. Lett. 11, 1644-1646 (1999).
  19. P. C. Peng, H. Y. Tseng, S. Chi, "Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme," IEEE Photon. Technol. Lett. 16, 575-577 (2004).
  20. Y. G. Han, T. V. A. Tran, "Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature," Opt. Lett. 11, 1282-1284 (2005).
  21. A. K. Zamzuri, M. I. Ali, A. Ahmad, R. Mohamad, M. A. Mahdi, "Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity," Opt. Lett. 31, 918-920 (2006).
  22. O. Frazão, C. Correia, J. L. Santos, J. M. Baptista, "Raman fiber Bragg-grating laser sensor with cooperative Rayleigh scattering for strain-temperature measurement," Meas. Sci. Technol. 20, 045203- (2009).
  23. A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, "Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering," Appl. Phys. B 99, 391-395 (2010).
  24. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, E. V. Podivilov, "Random distributed feedback fibre laser," Nature Photon 4, 231-235 (2010).
  25. A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, K. Schuster, "Suspended-core Fabry–Perot temperature sensor interrogation through a dual wavelength raman fiber laser," European Workshop on Optical Fibre Sensors PortoPortugal (2010).

2010 (2)

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, "Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering," Appl. Phys. B 99, 391-395 (2010).

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, E. V. Podivilov, "Random distributed feedback fibre laser," Nature Photon 4, 231-235 (2010).

2009 (3)

O. Frazão, C. Correia, J. L. Santos, J. M. Baptista, "Raman fiber Bragg-grating laser sensor with cooperative Rayleigh scattering for strain-temperature measurement," Meas. Sci. Technol. 20, 045203- (2009).

O. Frazao, J. M. Baptista, J. L. Santos, J. Kobelke, K. Schuster, "Refractive index tip sensor based on Fabry–Perot cavities formed as a suspended-core fibre," J. Eur. Opt., Soc. 4, 09041- (2009).

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, K. Schuster, "Fabry-Pérot cavity based on a suspended-core fiber for strain and temperature measurement," IEEE Photon. Technol. Lett. 21, 1229-1231 (2009).

2008 (3)

O. Frazao, J. M. Baptista, J. L. Santos, J. Kobelke, K. Schuster, "Strain and temperature characterization of sensing head based on a suspended-core fibre in Sagnac interferometer," Electron. Lett. 44, 1455-1456 (2008).

T. Wei, Y. Han, Y. Li, H. Tsai, H. Xiao, "Temperature-insensitive miniaturized fiber inline Fabry–Perot interferometer for highly sensitive refractive index measurement," Opt. Exp. 16, 5764-5769 (2008).

H. Y. Choi, K. S. Park, S. J. Park, U. Paek, B. H. Lee, E. S. Choi, "Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry–Perot interferometer," Opt. Lett. 33, 2455-2457 (2008).

2007 (1)

A. S. Webb, F. Poletti, D. J. Richardson, J. K. Sahu, "Suspended-core holey fiber for evanescent-field sensing," Optics Eng. 46, 010503-1-010503-3 (2007).

2006 (3)

E. Li, X. Wang, C. Zhang, "Fiber-optic temperature sensor based on interference of selective higher-order modes," App. Phys. Lett. 89, 0.91119-1-091119-3 (2006).

Y. J. Rao, "Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors," Opt. Fiber Technol. 12, 227-237 (2006).

A. K. Zamzuri, M. I. Ali, A. Ahmad, R. Mohamad, M. A. Mahdi, "Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity," Opt. Lett. 31, 918-920 (2006).

2005 (2)

Y. G. Han, T. V. A. Tran, "Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature," Opt. Lett. 11, 1282-1284 (2005).

Z. Huang, Y. Zhu, X. Chen, A. Wang, "Intrinsic Fabry–Perot fiber sensor for temperature and strain measurements," IEEE Photon. Technol. Lett. 17, 2403-2405 (2005).

2004 (1)

P. C. Peng, H. Y. Tseng, S. Chi, "Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme," IEEE Photon. Technol. Lett. 16, 575-577 (2004).

2001 (2)

M. Dalhem, J. L. Santos, L. A. Ferreira, F. M. Araújo, "Passive interrogation of low-finesse Fabry–Perot Cavities using fiber Bragg gratings," IEEE Photon. Technol. Lett. 13, 990-992 (2001).

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).

2000 (1)

K. T. V. Grattan, T. Sun, "Fiber optic sensor technology: An overview," Sens. Act. A 82, 40-61 (2000).

1999 (1)

E. Achaerandio, S. Jarabo, S. Abad, M. López-Amo, "New WDM amplified network for optical sensor multiplexing," IEEE Photon. Technol. Lett. 11, 1644-1646 (1999).

1998 (1)

T. Wang, S. Zheng, Z. Yang, "A high precision displacement sensor using a low-finesse fiber-optic Fabry-Pérot interferometer," Sens. Act. A 69, 134-138 (1998).

1997 (1)

Y. Lo, J. Sirkis, C. Chang, "Passive signal processing of in-line fiber etalon sensors for high strain rate loading," J. Lightw. Technol. 15, 1578-1586 (1997).

1993 (1)

A. T. Alavie, S. E. Karr, A. Othonos, R. M. Measures, "A multiplexed Bragg grating fiber laser sensor system," IEEE Photon. Technol. Lett. 5, 1112-4 (1993).

App. Phys. Lett. (1)

E. Li, X. Wang, C. Zhang, "Fiber-optic temperature sensor based on interference of selective higher-order modes," App. Phys. Lett. 89, 0.91119-1-091119-3 (2006).

Appl. Phys. B (1)

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, "Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering," Appl. Phys. B 99, 391-395 (2010).

Electron. Lett. (1)

O. Frazao, J. M. Baptista, J. L. Santos, J. Kobelke, K. Schuster, "Strain and temperature characterization of sensing head based on a suspended-core fibre in Sagnac interferometer," Electron. Lett. 44, 1455-1456 (2008).

IEEE Photon. Technol. Lett. (6)

Z. Huang, Y. Zhu, X. Chen, A. Wang, "Intrinsic Fabry–Perot fiber sensor for temperature and strain measurements," IEEE Photon. Technol. Lett. 17, 2403-2405 (2005).

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, K. Schuster, "Fabry-Pérot cavity based on a suspended-core fiber for strain and temperature measurement," IEEE Photon. Technol. Lett. 21, 1229-1231 (2009).

M. Dalhem, J. L. Santos, L. A. Ferreira, F. M. Araújo, "Passive interrogation of low-finesse Fabry–Perot Cavities using fiber Bragg gratings," IEEE Photon. Technol. Lett. 13, 990-992 (2001).

A. T. Alavie, S. E. Karr, A. Othonos, R. M. Measures, "A multiplexed Bragg grating fiber laser sensor system," IEEE Photon. Technol. Lett. 5, 1112-4 (1993).

E. Achaerandio, S. Jarabo, S. Abad, M. López-Amo, "New WDM amplified network for optical sensor multiplexing," IEEE Photon. Technol. Lett. 11, 1644-1646 (1999).

P. C. Peng, H. Y. Tseng, S. Chi, "Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme," IEEE Photon. Technol. Lett. 16, 575-577 (2004).

J. Eur. Opt., Soc. (1)

O. Frazao, J. M. Baptista, J. L. Santos, J. Kobelke, K. Schuster, "Refractive index tip sensor based on Fabry–Perot cavities formed as a suspended-core fibre," J. Eur. Opt., Soc. 4, 09041- (2009).

J. Lightw. Technol. (1)

Y. Lo, J. Sirkis, C. Chang, "Passive signal processing of in-line fiber etalon sensors for high strain rate loading," J. Lightw. Technol. 15, 1578-1586 (1997).

Meas. Sci. Technol. (2)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).

O. Frazão, C. Correia, J. L. Santos, J. M. Baptista, "Raman fiber Bragg-grating laser sensor with cooperative Rayleigh scattering for strain-temperature measurement," Meas. Sci. Technol. 20, 045203- (2009).

Nature Photon (1)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, E. V. Podivilov, "Random distributed feedback fibre laser," Nature Photon 4, 231-235 (2010).

Opt. Exp. (1)

T. Wei, Y. Han, Y. Li, H. Tsai, H. Xiao, "Temperature-insensitive miniaturized fiber inline Fabry–Perot interferometer for highly sensitive refractive index measurement," Opt. Exp. 16, 5764-5769 (2008).

Opt. Fiber Technol. (1)

Y. J. Rao, "Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors," Opt. Fiber Technol. 12, 227-237 (2006).

Opt. Lett. (3)

Optics Eng. (1)

A. S. Webb, F. Poletti, D. J. Richardson, J. K. Sahu, "Suspended-core holey fiber for evanescent-field sensing," Optics Eng. 46, 010503-1-010503-3 (2007).

Sens. Act. A (2)

T. Wang, S. Zheng, Z. Yang, "A high precision displacement sensor using a low-finesse fiber-optic Fabry-Pérot interferometer," Sens. Act. A 69, 134-138 (1998).

K. T. V. Grattan, T. Sun, "Fiber optic sensor technology: An overview," Sens. Act. A 82, 40-61 (2000).

Other (3)

S. Selleri, E. Coscelli, M. Sozzi, A. Cucinotta, F. Poli, D. Passaro, "Air-suspended solid-core fibers for sensing," Proc. Opt. Sens. Conf. (2007) pp. 73561L-73561L-8.

I. Dicaire, J. C. Beugnot, L. Thévenaz, "Suspended-core fibres as optical gas sensing cells: Study and implementation," Proc. Photon. Eur. Conf. (2009) pp. 73570U-.

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, K. Schuster, "Suspended-core Fabry–Perot temperature sensor interrogation through a dual wavelength raman fiber laser," European Workshop on Optical Fibre Sensors PortoPortugal (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.