Abstract

Dynamic response of a Q-modulated semiconductor laser is simulated based on a rate equation model. Numerical results from both small-signal and large-signal analyses show that the Q-modulation has much higher bandwidth limit and smaller wavelength chirp than the direct modulation. It is shown that a high-extinction-ratio, low-chirp modulation of 40 GHz RZ signal can be achieved and the effects of various parameters on the Q-modulation are discussed. In addition to high-speed communications, the Q-modulated laser is particularly suitable for microwave carrier generation in radio-over-fiber systems.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription