Abstract

We demonstrate a variable optical attenuator (VOA) based on liquid crystal polarization gratings (LCPGs), which eliminates the need for complex polarization management found in competing LC technologies. We then configure the VOA as a multi-channel wavelength blocker resulting in a simple, compact architecture with high performance and low cost. Together with a dual fiber collimator, relay lenses, a diffraction grating, a quarter wave plate, and a mirror we achieve optical attenuation of ~50 dB with minimal polarization dependent loss (≤0.3 dB) and insertion loss (≤2.5 dB). The device also manifests competitive wavelength flatness (≤0.35 dB variation), response times (~40 ms), and temperature dependent loss (≥47 dB maximum attenuation up to 85°C). We describe the principle of operation, explain the fabrication process and optimization challenges, and finally present the system design and experimental results for a four-channel, 100 GHz wavelength blocker in the C-band.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. C. Lee, F. Hsiao, T. Kobayashi, K. Koh, "A 1-v operated mems variable optical attenuator using piezoelectric pzt thin-film actuators," IEEE J. Sel. Topics Quantum Electron. 15, 1529-1536 (2009).
  2. K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, H. Toshiyoshi, "A 5-v operated mems variable optical attenuator by soi bulk micromachining," IEEE J. Sel. Topics Quantum Electron. 10, 570-578 (2004).
  3. L. Zhu, Y. Huang, A. Yariv, "Integrated microfluidic variable optical attenuator," Opt. Exp. 13, 9916-9921 (2005).
  4. M. Lapsley, S. Lin, X. Mao, T. Huang, "An in-plane, variable optical attenuator using a fluid-based tunable reflective interface," Appl. Phys. Lett. 95, (2009) 083507.
  5. Y. Xu, M. Uddin, P. Chung, "Fabrication of a polymer based variable optical attenuator using liquid crystal cladding on inverted channel waveguide structure," Proc. Opto-Electron. Commun. Conf. (2008) pp. 1-2.
  6. K. Leosson, T. Rosenzveig, P. Hermannsson, A. Boltasseva, "Compact plasmonic variable optical attenuator," Opt. Exp. 16, 15 546-15 552 (2008).
  7. Y. Wu, X. Liang, Y. Lu, F. Du, Y. Lin, S. Wu, "Variable optical attenuator with a polymer-stabilized dual-frequency liquid crystal," Appl. Opt. 44, 4394-4397 (2005).
  8. X. Wang, Z. Huang, J. Feng, X. Liang, Y. Lu, "16.3: High contrast liquid crystal modulator based on phase compensation technique," Proc. Int. Display Res. Conf. (2008) pp. 1-4.
  9. X. Liang, Y. Lu, Y. Wu, F. Du, H. Wang, S. Wu, "Dual-frequency addressed variable optical attenuator with submillisecond response time," Jpn. J. Appl. Phys. 44, 1292-1295 (2005).
  10. C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, J. Liu, "Liquid crystal applications in telecommunication," Proc. SPIE 5003, 121-129 (2003).
  11. C. Mao, M. Xu, W. Feng, J. Liu, J.-C. Chiao, "Liquid crystal optical switches and signal processors," Proc. SPIE 4852, 63-70 (2001).
  12. L. Nikolova, T. Todorov, "Diffraction efficiency and selectivity of polarization holographic recording," J. Mod. Opt. 31, 579-588 (1984).
  13. C. Oh, M. Escuti, "Numerical analysis of polarization gratings using the finite-difference time-domain method," Phys. Rev. A 76, 1-8 (2007).
  14. C. Provenzano, P. Pagliusi, G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, (2006) 121105.
  15. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, B. R. Kimball, "Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching," J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).
  16. R. Komanduri, C. Oh, M. Escuti, "34.4: Late-news paper: Polarization independent projection systems using thin film polymer polarization gratings and standard liquid crystal microdisplays," Proc. SID Symp. (2009) pp. 487-490.
  17. E. Nicolescu, M. Escuti, "Polarization-independent tunable optical filters based on bilayer polarization gratings," Proc. SPIE 7050, (2008) 705018.
  18. E. Nicolescu, M. Escuti, "Compact spectrophotometer using polarization-independent liquid crystal tunable optical filters," Proc. SPIE 6661, (2007) 666105.
  19. J. Kim, C. Oh, M. Escuti, L. Hosting, S. Serati, "Wide-angle, nonmechanical beam steering using thin liquid crystal polarization gratings," Proc. SPIE 7093, (2008) 709302.
  20. C. Oh, J. Kim, J. Muth, S. Serati, M. Escuti, "High-throughput, continuous beam steering using rotating polarization," IEEE Photon. Technol. Lett. 22, 200-202 (2010).
  21. W. M. Jones, B. L. Conover, M. J. Escuti, "Evaluation of projection schemes for the liquid crystal polarization grating operating on unpolarized light," SID Symp. Dig. (2006) pp. 1015-1018.
  22. M. Escuti, W. Jones, "A polarization-independent liquid crystal spatial light modulator," Proc. SPIE 6332, (2006).
  23. J. Eakin, Y. Xie, R. Pelcovits, M. Radcliffe, G. Crawford, "Zero voltage freedericksz transition in periodically aligned liquid crystals," Appl. Phys. Lett. 85, 671-673 (2004).
  24. R. Komanduri, M. Escuti, "Elastic continuum analysis of the liquid crystal polarization grating," Phys. Rev. E 76, (2007) 021701.
  25. M. Schadt, H. Seiberle, A. Schuster, "Optical patterning of multi-domain liquid-crystal displays with wide viewing angles," Nature 381, 212-215 (1996).
  26. C. Oh, M. Escuti, "Achromatic diffraction from polarization gratings with high efficiency," Opt. Lett. 33, 2287-2289 (2008).

2010 (1)

C. Oh, J. Kim, J. Muth, S. Serati, M. Escuti, "High-throughput, continuous beam steering using rotating polarization," IEEE Photon. Technol. Lett. 22, 200-202 (2010).

2009 (3)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, B. R. Kimball, "Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching," J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).

M. Lapsley, S. Lin, X. Mao, T. Huang, "An in-plane, variable optical attenuator using a fluid-based tunable reflective interface," Appl. Phys. Lett. 95, (2009) 083507.

C. Lee, F. Hsiao, T. Kobayashi, K. Koh, "A 1-v operated mems variable optical attenuator using piezoelectric pzt thin-film actuators," IEEE J. Sel. Topics Quantum Electron. 15, 1529-1536 (2009).

2008 (4)

K. Leosson, T. Rosenzveig, P. Hermannsson, A. Boltasseva, "Compact plasmonic variable optical attenuator," Opt. Exp. 16, 15 546-15 552 (2008).

E. Nicolescu, M. Escuti, "Polarization-independent tunable optical filters based on bilayer polarization gratings," Proc. SPIE 7050, (2008) 705018.

J. Kim, C. Oh, M. Escuti, L. Hosting, S. Serati, "Wide-angle, nonmechanical beam steering using thin liquid crystal polarization gratings," Proc. SPIE 7093, (2008) 709302.

C. Oh, M. Escuti, "Achromatic diffraction from polarization gratings with high efficiency," Opt. Lett. 33, 2287-2289 (2008).

2007 (3)

E. Nicolescu, M. Escuti, "Compact spectrophotometer using polarization-independent liquid crystal tunable optical filters," Proc. SPIE 6661, (2007) 666105.

R. Komanduri, M. Escuti, "Elastic continuum analysis of the liquid crystal polarization grating," Phys. Rev. E 76, (2007) 021701.

C. Oh, M. Escuti, "Numerical analysis of polarization gratings using the finite-difference time-domain method," Phys. Rev. A 76, 1-8 (2007).

2006 (2)

C. Provenzano, P. Pagliusi, G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, (2006) 121105.

M. Escuti, W. Jones, "A polarization-independent liquid crystal spatial light modulator," Proc. SPIE 6332, (2006).

2005 (3)

L. Zhu, Y. Huang, A. Yariv, "Integrated microfluidic variable optical attenuator," Opt. Exp. 13, 9916-9921 (2005).

Y. Wu, X. Liang, Y. Lu, F. Du, Y. Lin, S. Wu, "Variable optical attenuator with a polymer-stabilized dual-frequency liquid crystal," Appl. Opt. 44, 4394-4397 (2005).

X. Liang, Y. Lu, Y. Wu, F. Du, H. Wang, S. Wu, "Dual-frequency addressed variable optical attenuator with submillisecond response time," Jpn. J. Appl. Phys. 44, 1292-1295 (2005).

2004 (2)

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, H. Toshiyoshi, "A 5-v operated mems variable optical attenuator by soi bulk micromachining," IEEE J. Sel. Topics Quantum Electron. 10, 570-578 (2004).

J. Eakin, Y. Xie, R. Pelcovits, M. Radcliffe, G. Crawford, "Zero voltage freedericksz transition in periodically aligned liquid crystals," Appl. Phys. Lett. 85, 671-673 (2004).

2003 (1)

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, J. Liu, "Liquid crystal applications in telecommunication," Proc. SPIE 5003, 121-129 (2003).

2001 (1)

C. Mao, M. Xu, W. Feng, J. Liu, J.-C. Chiao, "Liquid crystal optical switches and signal processors," Proc. SPIE 4852, 63-70 (2001).

1996 (1)

M. Schadt, H. Seiberle, A. Schuster, "Optical patterning of multi-domain liquid-crystal displays with wide viewing angles," Nature 381, 212-215 (1996).

1984 (1)

L. Nikolova, T. Todorov, "Diffraction efficiency and selectivity of polarization holographic recording," J. Mod. Opt. 31, 579-588 (1984).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

M. Lapsley, S. Lin, X. Mao, T. Huang, "An in-plane, variable optical attenuator using a fluid-based tunable reflective interface," Appl. Phys. Lett. 95, (2009) 083507.

C. Provenzano, P. Pagliusi, G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, (2006) 121105.

J. Eakin, Y. Xie, R. Pelcovits, M. Radcliffe, G. Crawford, "Zero voltage freedericksz transition in periodically aligned liquid crystals," Appl. Phys. Lett. 85, 671-673 (2004).

IEEE J. Sel. Topics Quantum Electron. (2)

C. Lee, F. Hsiao, T. Kobayashi, K. Koh, "A 1-v operated mems variable optical attenuator using piezoelectric pzt thin-film actuators," IEEE J. Sel. Topics Quantum Electron. 15, 1529-1536 (2009).

K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, H. Toshiyoshi, "A 5-v operated mems variable optical attenuator by soi bulk micromachining," IEEE J. Sel. Topics Quantum Electron. 10, 570-578 (2004).

IEEE Photon. Technol. Lett. (1)

C. Oh, J. Kim, J. Muth, S. Serati, M. Escuti, "High-throughput, continuous beam steering using rotating polarization," IEEE Photon. Technol. Lett. 22, 200-202 (2010).

J. Mod. Opt. (1)

L. Nikolova, T. Todorov, "Diffraction efficiency and selectivity of polarization holographic recording," J. Mod. Opt. 31, 579-588 (1984).

J. Nonlinear Opt. Phys. Mater. (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, B. R. Kimball, "Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching," J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).

Jpn. J. Appl. Phys. (1)

X. Liang, Y. Lu, Y. Wu, F. Du, H. Wang, S. Wu, "Dual-frequency addressed variable optical attenuator with submillisecond response time," Jpn. J. Appl. Phys. 44, 1292-1295 (2005).

Nature (1)

M. Schadt, H. Seiberle, A. Schuster, "Optical patterning of multi-domain liquid-crystal displays with wide viewing angles," Nature 381, 212-215 (1996).

Opt. Exp. (2)

K. Leosson, T. Rosenzveig, P. Hermannsson, A. Boltasseva, "Compact plasmonic variable optical attenuator," Opt. Exp. 16, 15 546-15 552 (2008).

L. Zhu, Y. Huang, A. Yariv, "Integrated microfluidic variable optical attenuator," Opt. Exp. 13, 9916-9921 (2005).

Opt. Lett. (1)

Phys. Rev. A (1)

C. Oh, M. Escuti, "Numerical analysis of polarization gratings using the finite-difference time-domain method," Phys. Rev. A 76, 1-8 (2007).

Phys. Rev. E (1)

R. Komanduri, M. Escuti, "Elastic continuum analysis of the liquid crystal polarization grating," Phys. Rev. E 76, (2007) 021701.

Proc. SPIE (6)

M. Escuti, W. Jones, "A polarization-independent liquid crystal spatial light modulator," Proc. SPIE 6332, (2006).

E. Nicolescu, M. Escuti, "Polarization-independent tunable optical filters based on bilayer polarization gratings," Proc. SPIE 7050, (2008) 705018.

E. Nicolescu, M. Escuti, "Compact spectrophotometer using polarization-independent liquid crystal tunable optical filters," Proc. SPIE 6661, (2007) 666105.

J. Kim, C. Oh, M. Escuti, L. Hosting, S. Serati, "Wide-angle, nonmechanical beam steering using thin liquid crystal polarization gratings," Proc. SPIE 7093, (2008) 709302.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, J. Liu, "Liquid crystal applications in telecommunication," Proc. SPIE 5003, 121-129 (2003).

C. Mao, M. Xu, W. Feng, J. Liu, J.-C. Chiao, "Liquid crystal optical switches and signal processors," Proc. SPIE 4852, 63-70 (2001).

Other (4)

X. Wang, Z. Huang, J. Feng, X. Liang, Y. Lu, "16.3: High contrast liquid crystal modulator based on phase compensation technique," Proc. Int. Display Res. Conf. (2008) pp. 1-4.

Y. Xu, M. Uddin, P. Chung, "Fabrication of a polymer based variable optical attenuator using liquid crystal cladding on inverted channel waveguide structure," Proc. Opto-Electron. Commun. Conf. (2008) pp. 1-2.

W. M. Jones, B. L. Conover, M. J. Escuti, "Evaluation of projection schemes for the liquid crystal polarization grating operating on unpolarized light," SID Symp. Dig. (2006) pp. 1015-1018.

R. Komanduri, C. Oh, M. Escuti, "34.4: Late-news paper: Polarization independent projection systems using thin film polymer polarization gratings and standard liquid crystal microdisplays," Proc. SID Symp. (2009) pp. 487-490.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.