Abstract

Emergence of sensor networks for data-procurement in wide-ranging applications, including defense, medical, environmental and structural health monitoring, has led to development of low-power miniature devices employing radio frequency (RF) communications. In contrast to RF, optical devices are smaller and consume less power; reflection, diffraction, and scattering from aerosols help distribute signal over large areas; and optical wireless provides freedom from interference and eavesdropping within an opaque enclosure. Optics can accommodate high-bandwidth transmission of multimedia in aircrafts, where RF is shunned due to interference with control signals. These motivate use of optical wireless as a mode of communication in sensor networks. We have set up and experimented on an infrared laser transceiver test-bed with ceiling used as reflector to establish an intensity-modulated/direct-detected (IM/DD) link. Frequency measurements are conducted to characterize the link up to 1 GHz, and are transformed to obtain impulse responses and eye diagrams. These experimental findings demonstrate the capability of indoor optical wireless links of delivering 1 gigabit per second and beyond, without intersymbol interference. Thus, a broadband infrastructure can be deployed allowing high-quality audio-visual data communication among sensor nodes.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. D. Kedar, S. Arnon, "Non-line-of-sight optical wireless sensor network operating in multiscattering channel," Appl. Opt. 45, 8454-8461 (2006).
  2. D. Kedar, E. Devila, D. Limon, S. Arnon, Optical Wireless Sensor Network in Multi-Scattering Channel: Laboratory Experiment (SPIE, 2005) pp. 58920Y.
  3. J. Llorca, A. Desai, U. Vishkin, C. C. Davis, S. D. Milner, Reconfigurable Optical Wireless Sensor Networks (SPIE, 2004) pp. 136-146.
  4. G. Yun, M. Kavehrad, "Spot-diffusing and fly-eye receivers for indoor infrared wireless communications," Proc. IEEE Wireless Communications Conf. Int. Conf. Sel. Topics (1992) pp. 262-265.
  5. F. Gfeller, U. Bapst, "Wireless in-house data communication via diffuse infrared radiation," Proc. IEEE 67, 1474-1486 (1979).
  6. H. Hashemi, G. Yun, M. Kavehrad, F. Behbahani, P. Galko, "Indoor propagation measurements at infrared frequencies for wireless local area networks applications," IEEE Trans. Veh. Technol. 43, 562-576 (1994).
  7. M. Pakravan, M. Kavehrad, H. Hashemi, "Indoor wireless infrared channel characterization by measurements," IEEE Trans. Veh. Technol. 50, 1053-1073 (2001).
  8. Q. Jiang, M. Kavehrad, M. Pakravan, M. Tai, "Wideband optical propagation measurement system for characterization of indoor wireless infrared channels," Proc. IEEE Int. Conf. Commun. (1995) pp. 1173-1176.
  9. J. Kahn, W. Krause, J. Carruthers, "Experimental characterization of non-directed indoor infrared channels," IEEE Trans. Commun. 43, 1613-1623 (1995).
  10. J. Barry, J. Kahn, W. Krause, E. Lee, D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, 367-379 (1993).
  11. C. R. Lomba, R. T. Valadas, A. M. de Oliveira Duarte, "Efficient simulation of the impulse response of the indoor wireless optical channel," Int. J. Commun. Syst. 13, 537-549 (2000).
  12. IrDA Physical Layer Specification v1.4. Infrared Data Association. http://www.irda.org/displaycommon.cfm?an=1\&subarticlenbr=69.
  13. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications IEEE Std. 802.11 (2007) http://standards.ieee.org/getieee802/802.11.html.
  14. WPAN Task Group 7 on Visible Light Communication IEEE 802.15 http://www.ieee802.org/15/pub/TG7.html.
  15. D. C. O'Brien, S. H. Khoo, W. Zhang, G. E. Faulkner, D. J. Edwards, "High-speed optical channel measurement system," Proc. SPIE (2001) pp. 135-144.
  16. Safety of Laser Products. Part 1: Equipment Classification, Requirements and User's Guide Std. 60 825 (2001) International Electrotechnical Commission (IEC).
  17. J. Kahn, J. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).
  18. Agilent Time Domain Analysis Using a Network Analyzer Agilent Technologies, application Note 1287-12. http://cp.literature.agilent.com/litweb/pdf/5989-5723EN.pdf.
  19. A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-Time Signal Processing (Prentice-Hall, Inc., 1999).
  20. A. Al-Ghamdi, J. Elmirghani, "Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion," IEEE Trans. Commun. 52, 37-45 (2004).
  21. Y. Alqudah, M. Kavehrad, "Optimum order of angle diversity with equal-gain combining receivers for broadband indoor optical wireless communications," IEEE Trans. Veh. Technol. 53, 94-105 (2004).
  22. J. R. Barry, Wireless Infrared Communications (Kluwer, 1994).
  23. M. Pakravan, E. Simova, M. Kavehrad, "Holographic diffusers for indoor infrared communication systems," Proc. GLOBECOM (1996) pp. 1608-1612.
  24. S. T. Jivkova, S. Shurulinkov, M. Kavehrad, "Holographic parabolic mirror as a receiver optical front end for wireless infrared communications: Experimental study," Appl. Opt. 41, 5860-5865 (2002) http://ao.osa.org/abstract.cfm?URI=ao-41-28-5860.
  25. M. Kavehrad, S. Jivkova, "Indoor broadband optical wireless communications: Optical subsystems designs and their impact on channel characteristics," IEEE Wireless Commun. 10, 30-35 (2003).

2006 (1)

2004 (2)

A. Al-Ghamdi, J. Elmirghani, "Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion," IEEE Trans. Commun. 52, 37-45 (2004).

Y. Alqudah, M. Kavehrad, "Optimum order of angle diversity with equal-gain combining receivers for broadband indoor optical wireless communications," IEEE Trans. Veh. Technol. 53, 94-105 (2004).

2003 (1)

M. Kavehrad, S. Jivkova, "Indoor broadband optical wireless communications: Optical subsystems designs and their impact on channel characteristics," IEEE Wireless Commun. 10, 30-35 (2003).

2002 (1)

2001 (1)

M. Pakravan, M. Kavehrad, H. Hashemi, "Indoor wireless infrared channel characterization by measurements," IEEE Trans. Veh. Technol. 50, 1053-1073 (2001).

2000 (1)

C. R. Lomba, R. T. Valadas, A. M. de Oliveira Duarte, "Efficient simulation of the impulse response of the indoor wireless optical channel," Int. J. Commun. Syst. 13, 537-549 (2000).

1997 (1)

J. Kahn, J. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).

1995 (1)

J. Kahn, W. Krause, J. Carruthers, "Experimental characterization of non-directed indoor infrared channels," IEEE Trans. Commun. 43, 1613-1623 (1995).

1994 (1)

H. Hashemi, G. Yun, M. Kavehrad, F. Behbahani, P. Galko, "Indoor propagation measurements at infrared frequencies for wireless local area networks applications," IEEE Trans. Veh. Technol. 43, 562-576 (1994).

1993 (1)

J. Barry, J. Kahn, W. Krause, E. Lee, D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, 367-379 (1993).

1979 (1)

F. Gfeller, U. Bapst, "Wireless in-house data communication via diffuse infrared radiation," Proc. IEEE 67, 1474-1486 (1979).

Appl. Opt. (2)

IEEE J. Sel. Areas Commun. (1)

J. Barry, J. Kahn, W. Krause, E. Lee, D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, 367-379 (1993).

IEEE Trans. Commun. (2)

A. Al-Ghamdi, J. Elmirghani, "Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion," IEEE Trans. Commun. 52, 37-45 (2004).

J. Kahn, W. Krause, J. Carruthers, "Experimental characterization of non-directed indoor infrared channels," IEEE Trans. Commun. 43, 1613-1623 (1995).

IEEE Trans. Veh. Technol. (3)

H. Hashemi, G. Yun, M. Kavehrad, F. Behbahani, P. Galko, "Indoor propagation measurements at infrared frequencies for wireless local area networks applications," IEEE Trans. Veh. Technol. 43, 562-576 (1994).

M. Pakravan, M. Kavehrad, H. Hashemi, "Indoor wireless infrared channel characterization by measurements," IEEE Trans. Veh. Technol. 50, 1053-1073 (2001).

Y. Alqudah, M. Kavehrad, "Optimum order of angle diversity with equal-gain combining receivers for broadband indoor optical wireless communications," IEEE Trans. Veh. Technol. 53, 94-105 (2004).

IEEE Wireless Commun. (1)

M. Kavehrad, S. Jivkova, "Indoor broadband optical wireless communications: Optical subsystems designs and their impact on channel characteristics," IEEE Wireless Commun. 10, 30-35 (2003).

Int. J. Commun. Syst. (1)

C. R. Lomba, R. T. Valadas, A. M. de Oliveira Duarte, "Efficient simulation of the impulse response of the indoor wireless optical channel," Int. J. Commun. Syst. 13, 537-549 (2000).

Proc. IEEE (2)

F. Gfeller, U. Bapst, "Wireless in-house data communication via diffuse infrared radiation," Proc. IEEE 67, 1474-1486 (1979).

J. Kahn, J. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).

Other (13)

Agilent Time Domain Analysis Using a Network Analyzer Agilent Technologies, application Note 1287-12. http://cp.literature.agilent.com/litweb/pdf/5989-5723EN.pdf.

A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-Time Signal Processing (Prentice-Hall, Inc., 1999).

Q. Jiang, M. Kavehrad, M. Pakravan, M. Tai, "Wideband optical propagation measurement system for characterization of indoor wireless infrared channels," Proc. IEEE Int. Conf. Commun. (1995) pp. 1173-1176.

D. Kedar, E. Devila, D. Limon, S. Arnon, Optical Wireless Sensor Network in Multi-Scattering Channel: Laboratory Experiment (SPIE, 2005) pp. 58920Y.

J. Llorca, A. Desai, U. Vishkin, C. C. Davis, S. D. Milner, Reconfigurable Optical Wireless Sensor Networks (SPIE, 2004) pp. 136-146.

G. Yun, M. Kavehrad, "Spot-diffusing and fly-eye receivers for indoor infrared wireless communications," Proc. IEEE Wireless Communications Conf. Int. Conf. Sel. Topics (1992) pp. 262-265.

IrDA Physical Layer Specification v1.4. Infrared Data Association. http://www.irda.org/displaycommon.cfm?an=1\&subarticlenbr=69.

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications IEEE Std. 802.11 (2007) http://standards.ieee.org/getieee802/802.11.html.

WPAN Task Group 7 on Visible Light Communication IEEE 802.15 http://www.ieee802.org/15/pub/TG7.html.

D. C. O'Brien, S. H. Khoo, W. Zhang, G. E. Faulkner, D. J. Edwards, "High-speed optical channel measurement system," Proc. SPIE (2001) pp. 135-144.

Safety of Laser Products. Part 1: Equipment Classification, Requirements and User's Guide Std. 60 825 (2001) International Electrotechnical Commission (IEC).

J. R. Barry, Wireless Infrared Communications (Kluwer, 1994).

M. Pakravan, E. Simova, M. Kavehrad, "Holographic diffusers for indoor infrared communication systems," Proc. GLOBECOM (1996) pp. 1608-1612.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.