Abstract

The performance of wavelength conversion based on nondegenerate four-wave mixing (FWM) with two pumps is theoretically evaluated in a silicon nanowire waveguide. A theoretical model is developed to take into the limitations of nonlinear loss parameters on conversion bandwidth, efficiency, and uniformity. Analysis shows that the conversion bandwidth of two-pump nondegenerate FWM is >30% broader than the conversion bandwidth of the degenerate FWM without compromising the conversion efficiency under the same pump power level. Also the results indicate that the improvement originates from efficient phase matching over broader bandwidth range due to two-wavelength pumps.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. Q. Lin, O. J. Painter, G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Exp. 15, 16604-16644 (2007).
  2. I. D. Rukhlenko, M. Premaratne, G. P. Agrawal, "Nonlinear silicon photonics: Analytical tools," IEEE J. Sel. Top. Quantum Electron. 16, 200-215 (2010).
  3. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, A. L. Gaeta, "High-speed optical sampling using a silicon-chip temporal magnifier," Opt. Exp. 17, 4324-4329 (2009).
  4. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
  5. X. Sang, O. Boyraz, "Gain and noise characteristics of high-bit-rate silicon parametric amplifiers," Opt. Exp. 16, 13122-13132 (2008).
  6. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, A. L. Gaeta, "All-optical regeneration on a silicon chip," Opt. Exp. 15, 7802-7809 (2007).
  7. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Exp. 13, 4629-4637 (2005).
  8. H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Exp. 14, 1182-1188 (2006).
  9. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
  10. B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, K. Bergman, "Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides," IEEE Photon. Technol. Lett. 21, 182-184 (2009).
  11. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Exp. 13, 4341-4349 (2005).
  12. A. Melloni, F. Morichetti, M. Martinelli, "Four-wave mixing and wavelength conversion in coupled-resonator optical waveguides," J. Opt. Soc. Amer. B 25, C87-C97 (2008).
  13. A. C. Turner, M. A. Foster, A. L. Gaeta, M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Opt. Exp. 16, 4881-4887 (2008).
  14. L. Jia, M. Geng, L. Zhang, L. Yang, P. Chen, Y. Liu, Q. Fang, M. Yu, "Effects of waveguide length and pump power on the efficiency of wavelength conversion in silicon nanowire waveguides," Opt. Lett. 34, 3502-3504 (2009).
  15. Q. Lin, J. Zhang, P. M. Fauchet, G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Exp. 14, 4786-4799 (2006).
  16. X. Zhang, S. Gao, S. He, "Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion," Prog. Electromagn. Res. 89, 183-198 (2009).
  17. X. Liu, W. M. J. Green, X. Chen, I.-W. Hsieh, J. I. Dadap, Y. A. Vlasov, R. M. Osgood, Jr."Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires," Opt. Lett. 33, 2889-2891 (2008).
  18. S. Gao, X. Zhang, Z. Li, S. He, "Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide," IEEE J. Sel. Top. Quantum Electron. 16, 250-256 (2010).
  19. S. Gao, E.-K. Tien, Q. Song, Y. Huang, O. Boyraz, "Ultra-broadband one-to-two wavelength conversion using low-phase-mismatching four-wave mixing in silicon waveguides," Opt. Exp. 18, 11898-11903 (2010).
  20. J. S. Park, S. Zlatanovic, M. L. Cooper, J. M. Chavez-Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, "Two-pump four-wave mixing in silicon waveguides," Proc. Frontiers in Optics, OSA Tech. Dig. (2009).
  21. D. C. Hutchings, E. W. Van Stryland, "Nondegenerate two-photon absorption in zinc blende semiconductors," J. Opt. Soc. Amer. B 9, 2065-2074 (1992).
  22. T. K. Liang, H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
  23. A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," J. Lightw. Technol. 24, 1440-1455 (2006).
  24. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Exp. 15, 12949-12958 (2007).
  25. S. Gao, Z. Li, X. Zhang, "Power-attenuated optimization for four-wave mixing-based wavelength conversion in silicon nanowire waveguides," J. Electromagn. Waves Appl. 24, 1255-1265 (2010).

2010 (4)

I. D. Rukhlenko, M. Premaratne, G. P. Agrawal, "Nonlinear silicon photonics: Analytical tools," IEEE J. Sel. Top. Quantum Electron. 16, 200-215 (2010).

S. Gao, X. Zhang, Z. Li, S. He, "Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide," IEEE J. Sel. Top. Quantum Electron. 16, 250-256 (2010).

S. Gao, E.-K. Tien, Q. Song, Y. Huang, O. Boyraz, "Ultra-broadband one-to-two wavelength conversion using low-phase-mismatching four-wave mixing in silicon waveguides," Opt. Exp. 18, 11898-11903 (2010).

S. Gao, Z. Li, X. Zhang, "Power-attenuated optimization for four-wave mixing-based wavelength conversion in silicon nanowire waveguides," J. Electromagn. Waves Appl. 24, 1255-1265 (2010).

2009 (4)

X. Zhang, S. Gao, S. He, "Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion," Prog. Electromagn. Res. 89, 183-198 (2009).

L. Jia, M. Geng, L. Zhang, L. Yang, P. Chen, Y. Liu, Q. Fang, M. Yu, "Effects of waveguide length and pump power on the efficiency of wavelength conversion in silicon nanowire waveguides," Opt. Lett. 34, 3502-3504 (2009).

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, A. L. Gaeta, "High-speed optical sampling using a silicon-chip temporal magnifier," Opt. Exp. 17, 4324-4329 (2009).

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, K. Bergman, "Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides," IEEE Photon. Technol. Lett. 21, 182-184 (2009).

2008 (4)

X. Sang, O. Boyraz, "Gain and noise characteristics of high-bit-rate silicon parametric amplifiers," Opt. Exp. 16, 13122-13132 (2008).

A. Melloni, F. Morichetti, M. Martinelli, "Four-wave mixing and wavelength conversion in coupled-resonator optical waveguides," J. Opt. Soc. Amer. B 25, C87-C97 (2008).

A. C. Turner, M. A. Foster, A. L. Gaeta, M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Opt. Exp. 16, 4881-4887 (2008).

X. Liu, W. M. J. Green, X. Chen, I.-W. Hsieh, J. I. Dadap, Y. A. Vlasov, R. M. Osgood, Jr."Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires," Opt. Lett. 33, 2889-2891 (2008).

2007 (3)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, A. L. Gaeta, "All-optical regeneration on a silicon chip," Opt. Exp. 15, 7802-7809 (2007).

Q. Lin, O. J. Painter, G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Exp. 15, 16604-16644 (2007).

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Exp. 15, 12949-12958 (2007).

2006 (5)

A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," J. Lightw. Technol. 24, 1440-1455 (2006).

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).

H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Exp. 14, 1182-1188 (2006).

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).

Q. Lin, J. Zhang, P. M. Fauchet, G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Exp. 14, 4786-4799 (2006).

2005 (2)

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Exp. 13, 4341-4349 (2005).

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Exp. 13, 4629-4637 (2005).

2004 (1)

T. K. Liang, H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).

1992 (1)

D. C. Hutchings, E. W. Van Stryland, "Nondegenerate two-photon absorption in zinc blende semiconductors," J. Opt. Soc. Amer. B 9, 2065-2074 (1992).

Appl. Phys. Lett. (1)

T. K. Liang, H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).

IEEE J. Sel. Top. Quantum Electron. (2)

I. D. Rukhlenko, M. Premaratne, G. P. Agrawal, "Nonlinear silicon photonics: Analytical tools," IEEE J. Sel. Top. Quantum Electron. 16, 200-215 (2010).

S. Gao, X. Zhang, Z. Li, S. He, "Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide," IEEE J. Sel. Top. Quantum Electron. 16, 250-256 (2010).

IEEE Photon. Technol. Lett. (2)

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, K. Bergman, "Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides," IEEE Photon. Technol. Lett. 21, 182-184 (2009).

J. Electromagn. Waves Appl. (1)

S. Gao, Z. Li, X. Zhang, "Power-attenuated optimization for four-wave mixing-based wavelength conversion in silicon nanowire waveguides," J. Electromagn. Waves Appl. 24, 1255-1265 (2010).

J. Lightw. Technol. (1)

A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," J. Lightw. Technol. 24, 1440-1455 (2006).

J. Opt. Soc. Amer. B (2)

D. C. Hutchings, E. W. Van Stryland, "Nondegenerate two-photon absorption in zinc blende semiconductors," J. Opt. Soc. Amer. B 9, 2065-2074 (1992).

A. Melloni, F. Morichetti, M. Martinelli, "Four-wave mixing and wavelength conversion in coupled-resonator optical waveguides," J. Opt. Soc. Amer. B 25, C87-C97 (2008).

Nature (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).

Opt. Exp. (11)

X. Sang, O. Boyraz, "Gain and noise characteristics of high-bit-rate silicon parametric amplifiers," Opt. Exp. 16, 13122-13132 (2008).

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, A. L. Gaeta, "All-optical regeneration on a silicon chip," Opt. Exp. 15, 7802-7809 (2007).

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Exp. 13, 4629-4637 (2005).

H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Exp. 14, 1182-1188 (2006).

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Exp. 13, 4341-4349 (2005).

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, A. L. Gaeta, "High-speed optical sampling using a silicon-chip temporal magnifier," Opt. Exp. 17, 4324-4329 (2009).

A. C. Turner, M. A. Foster, A. L. Gaeta, M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Opt. Exp. 16, 4881-4887 (2008).

Q. Lin, J. Zhang, P. M. Fauchet, G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Exp. 14, 4786-4799 (2006).

S. Gao, E.-K. Tien, Q. Song, Y. Huang, O. Boyraz, "Ultra-broadband one-to-two wavelength conversion using low-phase-mismatching four-wave mixing in silicon waveguides," Opt. Exp. 18, 11898-11903 (2010).

Q. Lin, O. J. Painter, G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Exp. 15, 16604-16644 (2007).

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Exp. 15, 12949-12958 (2007).

Opt. Lett. (2)

Prog. Electromagn. Res. (1)

X. Zhang, S. Gao, S. He, "Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion," Prog. Electromagn. Res. 89, 183-198 (2009).

Other (1)

J. S. Park, S. Zlatanovic, M. L. Cooper, J. M. Chavez-Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, "Two-pump four-wave mixing in silicon waveguides," Proc. Frontiers in Optics, OSA Tech. Dig. (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.