Abstract

We have developed novel optoelectronic packages and optical transmission system using an optical connector with an external optical waveguide to achieve low-loss chip-to-chip optical interconnections for computer systems. In order to connect the package and the connector, we have also proposed a socket as a coupling structure to realize an all passive alignment and high coupling efficiency. We have demonstrated high-speed and error-free signal transmission with four channels at 10-Gb/s/ch and up to 12-Gb/s/ch. Optical input and output (I/O) interfaces, including optical devices and controller integrated circuits (ICs), have been constructed onto the package surface by conventional flip-chip mounting. The optoelectronic package has optical waveguide holes (OWGHs) to pass optical signal vertically from a vertical-cavity surface-emitting laser (VCSEL) and to a photodiode (PD). The OWGHs consist of core and cladding material to enhance optical confinement. The optical connector that is just set underneath the package with two guide pins contains the thin-film polymer waveguide with 45$^{\circ}$-ended mirrors to bend the optical signal. Therefore, the shorter optical coupling distance has achieved low-loss optical link without microlenses between packages. We have also proposed an alignment structure to easily enable passive alignment, which is based on existing land grid array (LGA) packages and sockets clamping structures to simultaneously improve cost-competitiveness and usability.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription