Abstract

Asymmetric spectral responses of microring resonators are analyzed by modeling the coupling region as a two-input/two-output Mach–Zehnder interferometer (MZI). The asymmetric behavior is dictated by the phase difference between the pole and zero, which is a physical result of different optical losses on the upper and lower MZI arms. The coupling region is further modeled as a frequency dependent element by making the MZI arms asymmetric in length. From this model, it is easy to identify the impact on pole and zero magnitudes as well as relative phases, and thus predict the spectral amplitude response over the free-spectral range of the coupler MZI. We verify this model using experimental data and show physical evidence of the asymmetric spectral response and its origin.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. C.-Y. Chao, L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
  2. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Exp. 15, 9139-9146 (2007).
  3. M.-S. Kwon, W. H. Steier, "Microring-resonator-based sensor measuring both the concentration and temperature of a solution," Opt. Exp. 16, 9372-9377 (2008).
  4. I. M. White, H. Oveys, X. Fan, "Liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319-1321 (2006).
  5. S. Darmawan, L. Y. M. Tobing, T. Mei, "Coupling-induced phase shift in a microring-coupled mach-zehnder interferometer," Opt. Lett. 35, 238-240 (2010).
  6. A. C. Ruege, R. M. Reano, "Multimode waveguides coupled to single mode ring resonators," J. Lightw. Technol. 27, 2035-2043 (2009).
  7. D. Rezzonico, M. Jazbinsek, A. Guarino, O. P. Kwon, P. Gunter, "Electro-optic charon polymeric microring modulators," Opt. Exp. 16, 613-627 (2008).
  8. U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1878 (1961).
  9. Y. Lu, J. Yao, X. Li, P. Wang, "Tunable asymmetrical fano resonance and bistability in a microcavity-resonator-coupled mach-zehnder interferometer," Opt. Lett. 30, 3069-3071 (2005).
  10. S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002).
  11. M. Terrel, M. J. F. Digonnet, S. Fan, "Ring-coupled mach-zehnder interferometer optimized for sensing," Appl. Opt. 48, 4874-4879 (2009).
  12. S. Darmawan, Y. M. Landobasa, M. K. Chin, "Nested ring machzehnder interferometer," Opt. Exp. 15, 437-448 (2007).
  13. F. Wang, X. Wang, H. Zhou, Q. Zhou, Y. Hao, X. Jiang, M. Wang, J. Yang, "Fano-resonance-based mach-zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer," Opt. Express 17, 7708-7716 (2009).
  14. C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).
  15. M. E. Solmaz, D. B. Adams, W. C. Tan, W. T. Snider, C. K. Madsen, "Vertically integrated As$_2$S$_3$ ring resonator on LiNbO$_3$," Opt. Lett. 34, 1735-1737 (2009).

2010

2009

2008

D. Rezzonico, M. Jazbinsek, A. Guarino, O. P. Kwon, P. Gunter, "Electro-optic charon polymeric microring modulators," Opt. Exp. 16, 613-627 (2008).

M.-S. Kwon, W. H. Steier, "Microring-resonator-based sensor measuring both the concentration and temperature of a solution," Opt. Exp. 16, 9372-9377 (2008).

2007

S. Darmawan, Y. M. Landobasa, M. K. Chin, "Nested ring machzehnder interferometer," Opt. Exp. 15, 437-448 (2007).

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Exp. 15, 9139-9146 (2007).

2006

2005

2003

C.-Y. Chao, L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).

2002

S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002).

1961

U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1878 (1961).

Appl. Opt.

Appl. Phys. Lett.

C.-Y. Chao, L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).

S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002).

J. Lightw. Technol.

A. C. Ruege, R. M. Reano, "Multimode waveguides coupled to single mode ring resonators," J. Lightw. Technol. 27, 2035-2043 (2009).

Opt. Exp.

D. Rezzonico, M. Jazbinsek, A. Guarino, O. P. Kwon, P. Gunter, "Electro-optic charon polymeric microring modulators," Opt. Exp. 16, 613-627 (2008).

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Exp. 15, 9139-9146 (2007).

M.-S. Kwon, W. H. Steier, "Microring-resonator-based sensor measuring both the concentration and temperature of a solution," Opt. Exp. 16, 9372-9377 (2008).

S. Darmawan, Y. M. Landobasa, M. K. Chin, "Nested ring machzehnder interferometer," Opt. Exp. 15, 437-448 (2007).

Opt. Express

Opt. Lett.

Phys. Rev.

U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1878 (1961).

Other

C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.