Abstract

We have characterized the performance of a single-ended intradyne receiver when multiple wavelength-division multiplexed (WDM) channels are incident. Detection of a single 40 Gb/s dual-polarization QPSK channel is achieved within a band of up to 17 WDM channels using a receiver with real-time digital signal processing and without optical demultiplexing. Measurements are presented of the performance in a back-to-back configuration as well as after transmission over 400 km of standard single-mode fiber. The dependence of the coincident channels' interference on various parameters, such as the net chromatic dispersion and the orientation of the coincident channels' polarization tributaries relative to the receiver polarizer, is explored. We also investigate using a single interfering channel with its power appropriately scaled to represent multiple interfering channels as an alternative configuration for evaluating receiver performance. The single-interferer approach has significant disadvantages including increased polarization sensitivity and different scaling of the interference term arising from the channel-channel beating compared to true multi-channel interference.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription