Abstract

A wideband erbium-doped fiber amplifier (EDFA) is demonstrated using an Erbium-doped zirconia fiber as the gain medium. With a combination of both Zr and Al, we could achieve a high erbium doping concentration of 4320 ppm in the glass host without any phase separations of rare-earths. The Erbium doped fiber (EDF) is obtained from a fiber preform, which is fabricated in a ternary glass host, zirconia-yttria-aluminum codoped silica fiber using a MCVD process. Doping of Er$_{2}$O$_{3}$ into Zirconia yttria-aluminosilicate based glass is done through solution doping process. The maximum gain of 21.8 dB is obtained at 1560 nm with 2 m long of EDF and co-pumped with 1480 nm laser diode. At high input signal of ${-}4$ dBm, a flat-gain at average value of 8.6 dB is obtained with a gain variation of less than 4.4 dB within the wavelength region of 1535–1605 nm and using 3 m of EDF and 100 mW pump power. The corresponding noise figure is maintained below 9.6 dB at this wavelength region.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. M. Naftaly, S. Shen, A. Jha, "Tm$^{3 +}$-doped tellurite glass for a broadband amplifier at 1.47 $\nu$ m," Appl. Opt. 39, 4979-4984 (2000).
  2. S. Jiang, B.-C. Hwang, T. Luo, K. Seneschal, F. Smektala, S. Honkanen, J. Lucas, N. Peyghambarian, "Net gain of 15.5 dB from a 5.1 cm-long Er3+ -doped phosphate glass fiber," Proc. OFC (2000).
  3. S. W. Harun, R. Parvizi, X. S. Cheng, A. Parvizi, S. D. Emami, H. Arof, H. Ahmad, "Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier," Opt. Laser Technol. 42, 790-793 (2010).
  4. E. Snoeks, P. G. Kik, A. Polman, "Concentration quenching in erbium-implanted alkali-silicate glasses," Opt. Mater. 5, 159-167 (1996).
  5. D. M. Gill, L. McCaughan, J. C. Wright, "Spectroscopic site determinations in erbium-doped lithium niobate," Phys. Rev. B 53, 2334-2344 (1996).
  6. X. S. Cheng, R. Parvizi, H. Ahmad, S. W. Harun, "Wide-band bismuth-based erbium-doped fiber amplifier with a flat-gain characteristic," IEEE Photon. J. 1, 259-264 (2009).
  7. S. W. Harun, N. Tamchek, S. Shahi, H. Ahmad, "L-band amplification and multi- wavelength lasing with bismuth-based erbium doped fiber," Progr. Electromagn.Research C 6, 1-12 (2009).
  8. A. Dhar, M. C. Paul, M. Pal, A. K. Mondal, S. Sen, H. S. Maiti, R. Sen, "Characterization of porous core layer for controlling rare earth incorporation in optical fiber," Opt. Exp. 14, 9006-9015 (2006).
  9. G. D. Wilk, R. M. Wallace, J. M. Anthony, "Hafnium and zirconium silicates for advanced gate dielectrics," J. Appl. Phys. 87, 484-492 (2000).
  10. B. Rayner, R. Therrien, G. Lucovsky, "The structure of plasma-deposited and annealed pseudo-binary ZrO$_2$-SiO$_2$ alloys," Proc. Mater. Res. Soc. Symp. (2000).
  11. P. F. James, "Liquid-phase separation in glass-forming systems," J. Mater. Sci. 10, 1802 (1975).
  12. C. Zhao, O. Richard, H. Bender, M. Caymax, S. De Gendt, M. Heyns, E. Young, G. Roebben, O. Van Der Biest, S. Haukka, "Miscibility of amorphous ZrO$_{2}$-Al$_{2}$ O$_{3}$ binary alloy," Appl. Phys. Lett. 80, 2374-2376 (2002).

2010 (1)

S. W. Harun, R. Parvizi, X. S. Cheng, A. Parvizi, S. D. Emami, H. Arof, H. Ahmad, "Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier," Opt. Laser Technol. 42, 790-793 (2010).

2009 (2)

X. S. Cheng, R. Parvizi, H. Ahmad, S. W. Harun, "Wide-band bismuth-based erbium-doped fiber amplifier with a flat-gain characteristic," IEEE Photon. J. 1, 259-264 (2009).

S. W. Harun, N. Tamchek, S. Shahi, H. Ahmad, "L-band amplification and multi- wavelength lasing with bismuth-based erbium doped fiber," Progr. Electromagn.Research C 6, 1-12 (2009).

2006 (1)

A. Dhar, M. C. Paul, M. Pal, A. K. Mondal, S. Sen, H. S. Maiti, R. Sen, "Characterization of porous core layer for controlling rare earth incorporation in optical fiber," Opt. Exp. 14, 9006-9015 (2006).

2002 (1)

C. Zhao, O. Richard, H. Bender, M. Caymax, S. De Gendt, M. Heyns, E. Young, G. Roebben, O. Van Der Biest, S. Haukka, "Miscibility of amorphous ZrO$_{2}$-Al$_{2}$ O$_{3}$ binary alloy," Appl. Phys. Lett. 80, 2374-2376 (2002).

2000 (2)

M. Naftaly, S. Shen, A. Jha, "Tm$^{3 +}$-doped tellurite glass for a broadband amplifier at 1.47 $\nu$ m," Appl. Opt. 39, 4979-4984 (2000).

G. D. Wilk, R. M. Wallace, J. M. Anthony, "Hafnium and zirconium silicates for advanced gate dielectrics," J. Appl. Phys. 87, 484-492 (2000).

1996 (2)

E. Snoeks, P. G. Kik, A. Polman, "Concentration quenching in erbium-implanted alkali-silicate glasses," Opt. Mater. 5, 159-167 (1996).

D. M. Gill, L. McCaughan, J. C. Wright, "Spectroscopic site determinations in erbium-doped lithium niobate," Phys. Rev. B 53, 2334-2344 (1996).

1975 (1)

P. F. James, "Liquid-phase separation in glass-forming systems," J. Mater. Sci. 10, 1802 (1975).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Zhao, O. Richard, H. Bender, M. Caymax, S. De Gendt, M. Heyns, E. Young, G. Roebben, O. Van Der Biest, S. Haukka, "Miscibility of amorphous ZrO$_{2}$-Al$_{2}$ O$_{3}$ binary alloy," Appl. Phys. Lett. 80, 2374-2376 (2002).

IEEE Photon. J. (1)

X. S. Cheng, R. Parvizi, H. Ahmad, S. W. Harun, "Wide-band bismuth-based erbium-doped fiber amplifier with a flat-gain characteristic," IEEE Photon. J. 1, 259-264 (2009).

J. Appl. Phys. (1)

G. D. Wilk, R. M. Wallace, J. M. Anthony, "Hafnium and zirconium silicates for advanced gate dielectrics," J. Appl. Phys. 87, 484-492 (2000).

J. Mater. Sci. (1)

P. F. James, "Liquid-phase separation in glass-forming systems," J. Mater. Sci. 10, 1802 (1975).

Opt. Exp. (1)

A. Dhar, M. C. Paul, M. Pal, A. K. Mondal, S. Sen, H. S. Maiti, R. Sen, "Characterization of porous core layer for controlling rare earth incorporation in optical fiber," Opt. Exp. 14, 9006-9015 (2006).

Opt. Laser Technol. (1)

S. W. Harun, R. Parvizi, X. S. Cheng, A. Parvizi, S. D. Emami, H. Arof, H. Ahmad, "Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier," Opt. Laser Technol. 42, 790-793 (2010).

Opt. Mater. (1)

E. Snoeks, P. G. Kik, A. Polman, "Concentration quenching in erbium-implanted alkali-silicate glasses," Opt. Mater. 5, 159-167 (1996).

Phys. Rev. B (1)

D. M. Gill, L. McCaughan, J. C. Wright, "Spectroscopic site determinations in erbium-doped lithium niobate," Phys. Rev. B 53, 2334-2344 (1996).

Progr. Electromagn.Research C (1)

S. W. Harun, N. Tamchek, S. Shahi, H. Ahmad, "L-band amplification and multi- wavelength lasing with bismuth-based erbium doped fiber," Progr. Electromagn.Research C 6, 1-12 (2009).

Other (2)

S. Jiang, B.-C. Hwang, T. Luo, K. Seneschal, F. Smektala, S. Honkanen, J. Lucas, N. Peyghambarian, "Net gain of 15.5 dB from a 5.1 cm-long Er3+ -doped phosphate glass fiber," Proc. OFC (2000).

B. Rayner, R. Therrien, G. Lucovsky, "The structure of plasma-deposited and annealed pseudo-binary ZrO$_2$-SiO$_2$ alloys," Proc. Mater. Res. Soc. Symp. (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.