Abstract

Optical properties of B$_{\rm x}$In$_{1 - {\rm x}}$N are calculated as a function of the varying concentration of Boron and Indium. Indium is gradually replaced by Boron and optical properties of the resulting materials are studied. The fractional concentration of Boron is increased gradually from ${\rm x} = 0$ to ${\rm x} = 1$ in steps of 0.25. The bandgap increases with the increasing Boron concentration, from 0.95 eV for pure InN to 5.6 eV for BN. A unique behavior of BN in zinc-blend phase is observed, that is, it shifts from indirect to direct bandgap semiconductor by the substitution of In on B sites. This behavior can be used to make novel and advanced optical devices. Frequency dependent reflectivity, absorption coefficient, and optical conductivity of B$_{\rm x}$In$_{1 - {\rm x}}$N are calculated and found to be the constituent's concentration dependent. The region of reflectivity, absorption coefficient and optical conductivity shifts from lower frequency into the higher frequency as the material goes from pure InN to pure BN.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription