Abstract

We have derived a modified finite-difference frequency-domain (FDFD) algorithm for two-dimensional (2-D) metallic photonic crystal (MPC) analysis. Using this method, the numerical results for the transverse-electric (TE) and transverse-magnetic (TM) modes in square and triangular lattices are in excellent agreements with those from other method. Then the correspondence of the band gaps between a unit cell and a supercell is demonstrated. Furthermore, by comparing the field distributions of the defect modes in a point defected MPC and a point defected dielectric photonic crystal (DPC), it is found that the defect MPC has a higher degree of localization, which means that MPC is preponderant for resonator and waveguide applications in millimeter wave and sub-millimeter wave bands.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription